For real data Build pathway matrices using iCARH.getPathwaysMat. Elements in kegg id list may contain multiple kegg ids per metabolite. If KEGG id unknown : “Unk[number]”.
keggid = list("Unk1", "C03299","Unk2","Unk3",
c("C08363", "C00712"), # allowing multiple ids per metabolite
)
pathways = iCARH.GetPathwaysMat(keggid, "rno")
To simulate data use iCARH.simulate
# Manually choose pathways
path.names = c("path:map00564","path:map00590","path:map00061","path:map00591",
"path:map00592","path:map00600","path:map01040","path:map00563")
data.sim = iCARH.simulate(Tp, N, J, P, K, path.names=path.names, Zgroupeff=c(0,4),
beta.val=c(1,-1,0.5, -0.5))
## Warning in iCARH.simulate(Tp, N, J, P, K, path.names = path.names, Zgroupeff = c(0, : Number of pathways reduced to 1 due to random selection of metabolites
## in the intially specified pathways.
XX = data.sim$XX
Y = data.sim$Y
Z = data.sim$Z
pathways = data.sim$pathways
Check inaccuracies between covariance and design matrices
pathways.bin = lapply(pathways, function(x) { y=1/(x+1); diag(y)=0; y})
adjmat = rowSums(abind::abind(pathways.bin, along = 3), dims=2)
cor.thresh = 0.7
# check number of metabolites in same pathway but not correlated
for(i in 1:Tp) print(sum(abs(cor(XX[i,,])[which(adjmat>0)])<cor.thresh))
## [1] 108
## [1] 120
## [1] 146
## [1] 124
Run iCARH model. Takes about 12 mins.
rstan::rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
fit.sim = iCARH.model(XX, Y, Z, pathways, control = list(adapt_delta = 0.99, max_treedepth=10),
iter = 500, chains = 1, pars=c("YY","Xmis","Ymis"), include=F)
## Warning: rstan >= 2.18.2 or R < 3.6.0 needed for this function. Program
## will exit promptly
# Not run
# fit.sim = iCARH.model(XX, Y, Z, pathways, control = list(adapt_delta = 0.99, max_treedepth=10),
# iter = 1100, chains = 2, pars=c("YY","Xmis","Ymis"), include=F)
Processing results. Bacteria effects.
if(!is.null(fit.sim)){
gplot = iCARH.plotBeta(fit.sim)
gplot
}
Treatments effects
if(!is.null(fit.sim)){
gplot = iCARH.plotTreatmentEffect(fit.sim)
gplot
}
Pathway analysis
if(!is.null(fit.sim)){
gplot = iCARH.plotPathwayPerturbation(fit.sim, names(data.sim$pathways))
gplot
}
Normality assumptions
if(!is.null(fit.sim)){
par(mfrow=c(1,2))
iCARH.checkNormality(fit.sim)
}
WAIC
if(!is.null(fit.sim)){
waic = iCARH.waic(fit.sim)
waic
}
Posterior predictive checks MAD : mean absolute deviation between covariance matrices
if(!is.null(fit.sim)){
mad = iCARH.mad(fit.sim, XX)
quantile(mad)
}