Package ‘FedIRT’

April 10, 2024

Type Package
Title Federated Item Response Theory Models
Version 0.1.0

Description Integrate Item Response Theory (IRT) and Federated Learning to estimate tradi-
tional IRT models, including the 2-Parameter Logistic (2PL) and the Graded Response Mod-
els, with enhanced privacy. It allows for the estimation in a distributed manner without compro-
mising accuracy. A user-friendly 'shiny' application is included. For more details, see Biy-
ing Zhou, Feng Ji (2024) “*'FedIRT": An R package and 'shiny' app for estimating feder-
ated item response theory mod-
els" <https://github.com/Feng-Ji-Lab/FedIRT/blob/main/paper/paper.pdf>.

License MIT + file LICENSE

Depends R (>=3.5.0)

Imports purrr, pracma, shiny, httr, callr, DT, ggplot2, shinyjs,
Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

LazyData true

NeedsCompilation no

Author Biying Zhou [cre],
Feng Ji [aut]

Maintainer Biying Zhou <zby.zhou@mail.utoronto.ca>
Repository CRAN
Date/Publication 2024-04-10 20:00:12 UTC

R topics documented:

example_data_ 2PL L
example_data_ 2PL_1
example_data_2PL_2

https://github.com/Feng-Ji-Lab/FedIRT/blob/main/paper/paper.pdf

example_data_2PL

example_data_graded 4
example_data_graded_and_binary Lo 5
fedirt_ 2PL e e e e e 5
fedirt. 2PL_data e 7
fedirt 2PL._median _data e 8
fedirt_gpem L e e e e 9
fedirt_gpem_data 10
g logl . . e 11
g logl entry 12
g logl_gpem L 12
logL . . . e e 13
logl_entry e e e 14
logl_gpem e 15
MEMOIZE o v v v e o e 16
runclient L 16
TUNSEIVET . & v v v e e e e e e e e e e e e e e e e e e e 17

Index 19

example_data_2PL Binary Response Dataset for Federated 2PL Model
Description

A synthetic dataset composed of responses from 160 students to 10 items, with all responses binary.

Usage

example_data_2PL

Format

A dataframe with 160 rows and 10 columns. Each row corresponds to a student’s set of responses,
and each column represents the responses of all students to a particular item.

Details

A response of 1 indicates a correct answer, and O represents an incorrect answer.

Source

The data are synthetically generated and are not reflective of any real student data.

Examples

data(example_data_2PL)

example_data_2PL,_1 3

example_data_2PL_1 Binary Response Dataset for Federated 2PL Model

Description

A synthetic dataset composed of responses from 81 students to 10 items, with all responses binary.
It is the first part of "example_data_2PL". It is used to test the correctness of federated 2PL model.
A response of 1 indicates a correct answer, and O represents an incorrect answer.

Usage

example_data_2PL_1

Format
A dataframe with 81 rows and 10 columns. Each row corresponds to a student’s set of responses,
and each column represents the responses of all students to a particular item.

Source

The data are synthetically generated and are not reflective of any real student data.

Examples

data(example_data_2PL_1)

example_data_2PL_2 Binary Response Dataset for Federated 2PL Model

Description

A synthetic dataset composed of responses from 79 students to 10 items, with all responses binary.
It is the second part of "example_data_2PL". It is used to test the correctness of federated 2PL
model. A response of 1 indicates a correct answer, and 0 represents an incorrect answer.

Usage

example_data_2PL_2

Format

A dataframe with 79 rows and 10 columns. Each row corresponds to a student’s set of responses,
and each column represents the responses of all students to a particular item.

4 example_data_graded

Source

The data are synthetically generated and are not reflective of any real student data.

Examples

data(example_data_2PL_2)

example_data_graded Graded Response Dataset for Federated Graded Model

Description

A synthetic dataset containing responses of 100 students across 10 items, with all items a graded
response (0-3 points). This kind of dataset is typically used for testing and validating federated
graded response models.

Usage

example_data_graded

Format
A data frame with 100 rows and 10 columns. Each row represents the responses of a single student,
and each column represents one of the 10 graded response items.

Details

The dataset is particularly suitable for testing federated graded model.

Source

The data have been created for demonstration purposes and do not correspond to any actual student’s
grades.

Examples

data(example_data_graded)

example_data_graded_and_binary 5

example_data_graded_and_binary
Graded Response Dataset for Federated Graded Model

Description

A synthetic dataset containing 160 students and 8 items, with the first item graded response (0-3
points) and other items binary response. It could be used in the federated graded model testing.

Usage

example_data_graded_and_binary

Format

A dataframe with 160 rows and 8 columns. Each row denotes a student’s responding status, and
each column denotes the responding status for all students in one item.

Source

The data were generated synthetically for illustrative purposes and not representing any real an-
swering status.

Examples

data(example_data_graded_and_binary)

fedirt_2PL Federated 2PL estimate function

Description

This function implements a federated learning approach to estimate the parameters of the 2PL IRT
model. It allows for collaborative estimation across multiple datasets, while maintaining the privacy
of each individual data source. The federated 2PL model is particularly useful in contexts where
data sharing might be limited due to privacy concerns or logistical constraints.

Usage

fedirt_2PL(J, loglL_entry, g_loglL_entry)

6 fedirt 2PL

Arguments
J An integer indicating the number of items in the IRT model across all sites. This
number should be consistent for all response matrices provided.
logl_entry A function that calculates the sum of log-likelihoods for the response matrices
across all sites. This function is crucial for evaluating the fit of the model at each
iteration.

g_logl_entry A function that computes the aggregated gradient of the log-likelihood across
all participating entities.

Details

The algorithm leverages federated learning techniques to estimate shared item parameters and in-
dividual ability levels without requiring the raw data to be combined into a single dataset. The
estimation procedure is composed of several steps, including initialization, local computations at
each data source, communication of summary statistics to a central server, and global parameter
updates. This cycle is repeated until convergence criteria are met and the global parameters stabi-
lize.

Regarding the input parameters, ’J’ is the number of items across all sites, which should be consis-
tent and known in advance. The "logL._entry’ parameter should be a function that computes the log-
likelihood of the observed responses given the current model parameters. Likewise, ’g_logL._entry’
is expected to be a function that computes the gradient of the log-likelihood with respect to the
model parameters to inform the optimization process during parameter estimation.

Value
A list containing the following components from the federated 2PL model estimation:
* par: Numeric vector of model’s fitted parameters including item discrimination (a) and item
difficulty (b) parameters.

» value: The optimization objective function’s value at the found solution, typically the log-
likelihood.

* counts: Named integer vector with counts of function evaluations and gradient evaluations
during optimization.

* convergence: Integer code indicating the optimization’s convergence status (0 indicates suc-
cessful convergence).

* message: Message from optimizer about optimization process, NULL if no message is avail-
able.

* loglik: The calculated log-likelihood of the fitted model, identical to the ’value’ element
when the objective function is log-likelihood.

* a: Numeric vector of estimated item discrimination parameters.
* b: Numeric vector of estimated item difficulty parameters.
* person: List containing person-related estimates with elements:

— a: Vector of discrimination parameters (same as top-level ’a’).
— b: Vector of difficulty parameters (same as top-level ’b’).
— ability: List of numeric vectors with person abilities per site.

fedirt_2PL._data 7

— site: Numeric vector of abilities or locations specific to each site.

— person: List of numeric vectors of person abilities minus site ability.

fedirt_2PL_data Federated 2PL model

Description

This function is only used to test the accuracy and processing time of this algorithm. It inputs a list
of responding matrices and return the federated 2PL parameters. Note: This function can only cal-
culate one combined dataset. To use federated 2PL in distributed datasets, please use fedirt_2PL().

Usage

fedirt_2PL_data(inputdata)

Arguments

inputdata A List of all responding matrix.

Details

Input is a List of responding matrices from each school, every responding matrix is one site’s data.
Value

A list with the estimated global discrimination a, global difficulty b, person’s abilities ability, sites’

abilities site, and log-likelihood value loglik.

Examples

inputdata = list(as.matrix(example_data_2PL))
fedresult = fedirt_2PL_data(inputdata)

inputdata = list(as.matrix(example_data_2PL_1), as.matrix(example_data_2PL_2))
fedresult = fedirt_2PL_data(inputdata)

8 fedirt_2PL._median_data

fedirt_2PL_median_data
Federated 2PL model

Description

This function is only used to test the accuracy and processing time of this algorithm. It inputs a list
of responding matrices and return the federated 2PL parameters. Note: This function can only cal-
culate one combined dataset. To use federated 2PL in distributed datasets, please use fedirt_2PL().

Usage

fedirt_2PL_median_data(inputdata)

Arguments

inputdata A List of all responding matrix.

Details

Input is a List of responding matrices from each school, every responding matrix is one site’s data.
It uses Federated median instead of FedAvg and FedSGD. The results are not same as traditional
2PL method, but is robust if there are outliers.

Value

A list with the estimated global discrimination a, global difficulty b, person’s abilities ability, sites’
abilities site, and log-likelihood value loglik.

Examples

inputdata = list(as.matrix(example_data_2PL))
fedresult = fedirt_2PL_median_data(inputdata)

inputdata = list(as.matrix(example_data_2PL_1), as.matrix(example_data_2PL_2))
fedresult = fedirt_2PL_median_data(inputdata)

fedirt_gpcm 9

fedirt_gpcm Federated Graded Response Model Estimation Function

Description

Implements a federated learning approach for the estimation of the graded response model pa-
rameters, enabling collaborative parameter estimation across distributed datasets while ensuring
individual data source privacy.

Usage
fedirt_gpecm(J, M, loglL_entry, g_logl_entry)

Arguments

J An integer indicating the number of items in the IRT model across all sites. This
number should be consistent for all response matrices provided.

M An integer vector indicating the maximum level (number of categories minus
one) for each item across all sites, which determines the total number of step
difficulties to estimate for the graded response model.

logl_entry A function that calculates the sum of log-likelihoods for the response matrices
across all sites. This function is crucial for evaluating the fit of the model at each
iteration.

g_logl_entry A function that computes the aggregated gradient of the log-likelihood across
all participating entities.

Details

The function adopts a federated learning framework to perform estimation of item step difficulties
and individual ability levels in an IRT graded response model without needing to pool the data
into one centralized dataset. The estimator follows an iterative optimization procedure consisisting
of local computations, information sharing with a central aggregator, and updating of the global
parameters.

Value
A list containing the following components from the federated graded model estimation:
e par: Numeric vector of model’s fitted parameters including item discrimination (a) and item
difficulty (b) parameters.

* value: The optimization objective function’s value at the found solution, typically the log-
likelihood.

* counts: Named integer vector with counts of function evaluations and gradient evaluations
during optimization.

* convergence: Integer code indicating the optimization’s convergence status (0 indicates suc-
cessful convergence).

10 fedirt_gpcm_data

* message: Message from optimizer about optimization process, NULL if no message is avail-
able.

loglik: The calculated log-likelihood of the fitted model, identical to the ’value’ element
when the objective function is log-likelihood.

* a: Numeric vector of estimated item discrimination parameters.

* b: Numeric vector of estimated item difficulty parameters.

@references Muraki, E. (1992). "A generalized partial credit model: Application of an EM algo-
rithm." Applied Psychological Measurement, 16(2), 159-176. doi:10.1177/014662169201600206

fedirt_gpcm_data Federated gpcm model

Description

This function is only used to test the accuracy and processing time of this algorithm. It inputs a
list of responding matrices and return the federated gpcm parameters. Note: This function can
only calculate one combined dataset. To use federated gpcm in distributed datasets, please use
fedirt_gpcm().

Usage

fedirt_gpcm_data(inputdata)

Arguments

inputdata A List of all responding matrix.

Details

Input is a List of responding matrices from each school, every responding matrix is one site’s data.

Value

A list with the estimated global discrimination a, global difficulty b, person’s abilities ability, sites’
abilities site, and log-likelihood value loglik.

Examples

inputdata = list(as.matrix(example_data_graded))
fedresult = fedirt_gpcm_data(inputdata)

inputdata = list(as.matrix(example_data_graded_and_binary))
fedresult = fedirt_gpcm_data(inputdata)

https://doi.org/10.1177/014662169201600206

g logL 11

g_loglL Gradient of Log-Likelihood for the federated 2PL Model

Description

Calculates the gradients of the log-likelihood function with respect to the item discrimination (a)
and difficulty (b) parameters for the Two-Parameter Logistic (2PL) Item Response Theory (IRT)
model. This computation is vital for optimizing the item parameters via gradient-based optimization
algorithms.

Usage
g_logl(a, b, data, g = 21, lower_bound = -3, upper_bound = 3)

Arguments
a Numeric vector of item discrimination parameters in the 2PL model.
b Numeric vector of item difficulty parameters in the 2PL model.
data The matrix of observed item responses, with individuals in rows and items in
columns.
q The number of Gaussian quadrature points for numerical integration (default is
21).
lower_bound The lower bound for Gaussian quadrature integration (default is -3).
upper_bound The upper bound for Gaussian quadrature integration (default is 3).
Details

The function approximates the partial derivatives by utilizing Gaussian quadrature for numerical
integration. Memoization techniques are used to cache intermediate results, which is crucial for
efficient computation because it avoids redundant calculations. This can significantly speed up
iterative algorithms, particularly in the context of large datasets.

The partial gradient for each parameter is:

M
@ = Z Z(Vzk(n) — Bi)[rijnk — MinkP;(Vik(n))]
n=11=1
ol Nis
TE— (—ay) 303 Trignn — mink Py (Vie(n))]
0B n=1i=1

Value

A list containing two elements: the gradient vector with respect to item discrimination parameters
(’a’) and the gradient vector with respect to item difficulty parameters (’b’).

12 g logl,_gpcm

g_logl_entry Aggregated Gradient of Log-Likelihood for Federated Learning

Description

Calculates the sum of the gradients of the log-likelihood with respect to item discrimination (a)
and difficulty (b) parameters across all schools participating in a federated learning process. The
function g_loglL_entry is a critical component in the gradient-based optimization process within
fedirt.

Usage
g_loglL_entry(ps)

Arguments
ps A numeric vector including the model’s current estimates for the item parame-
ters, organized consecutively with discrimination parameters followed by diffi-
culty parameters.
Details

The function aggregates the gradients computed locally at each school. The cumulative gradient
is then used in the optimization algorithm to update the model parameters. Each school should
implement the function get_g_loglL_from_index which computes the gradients of log-likelihood
locally. This function needs to be aligned with the federated learning framework, typically involving
network communication to retrieve the gradient information.

In simplified scenarios, or during initial testing and development, users can substitute the network
communication with a direct call to a local g_loglL function that computes the gradient of log-
likelihood.

Value

A matrix where the first half of rows corresponds to the aggregated gradient with respect to item
discrimination parameters and the second half corresponds to the aggregated gradient with respect
to item difficulty parameters.

g_logl_gpcm Gradient of Log-Likelihood for the federated graded Model

Description

Calculates the gradients of the log-likelihood function with respect to the item discrimination (a)
and difficulty (b) parameters for the graded IRT model. This computation is vital for optimizing the
item parameters via gradient-based optimization algorithms.

logL 13

Usage

g_logl_gpcm(a, b, data, g = 21, lower_bound = -3, upper_bound = 3)

Arguments
a Numeric vector of item discrimination parameters in the graded model.
b Numeric vector of item difficulty parameters in the graded model.
data The matrix of observed item responses, with individuals in rows and items in
columns.
q The number of Gaussian quadrature points for numerical integration (default is
21).
lower_bound The lower bound for Gaussian quadrature integration (default is -3).
upper_bound The upper bound for Gaussian quadrature integration (default is 3).
Details

The function approximates the partial derivatives by utilizing Gaussian quadrature for numerical
integration. Memoization techniques are used to cache intermediate results, which is crucial for
efficient computation because it avoids redundant calculations. This can significantly speed up
iterative algorithms, particularly in the context of large datasets.

Value

A list containing two elements: the gradient vector with respect to item discrimination parameters
(’a’) and the gradient vector with respect to item difficulty parameters (’b’).

loglL Log-Likelihood of the federated 2PL Model

Description

Computes the log-likelihood of the Two-Parameter Logistic (2PL) IRT model given item param-
eters and response data. The computation utilizes numerical integration and is optimized through
memoization for repeated evaluations.

Usage

loglL(a, b, data, q = 21, lower_bound = -3, upper_bound = 3)

14

Arguments

a
b
data

lower_bound

upper_bound

Details

logL_entry

The vector of item discrimination parameters in the 2PL model.
The vector of item difficulty parameters in the 2PL model.
The matrix of observed responses, with individuals in rows and items in columns.

The number of Gaussian quadrature points to use for numerical integration (de-
fault is 21). Gaussian quadrature is a numerical integration technique to ap-
proximate the integral of a function, and is particularly useful for accurate and
efficient computation.

The lower limit for the Gaussian quadrature integration (default is -3).

The upper limit for the Gaussian quadrature integration (default is 3).

The function performs numerical integration over a set of quadrature points to calculate the proba-
bilities of the observed responses under the 2PL. model, considering the item discrimination (a) and
difficulty (b) parameters. Memoization is used to cache computed values of the probabilities, logits,
and log-likelihoods to avoid redundant calculations and speed up the process.

Value

The computed log-likelihood of the 2PL model as a single numeric value.

logl_entry

Aggregate Log-Likelihood Function for Federated Learning

Description

Computes the sum of log-likelihoods across multiple schools in a federated learning setting. The
function logl_entry aggregates contribution of each school’s log-likelihood to the overall model.
It is designed to be used within the optimization process of fedirt.

Usage

logl_entry(ps)

Arguments

ps

Details

A parameter vector consisting of item parameters; it should include both dis-
crimination (a) and difficulty (b) parameters.

In a federated learning context, each school computes its log-likelihood locally. The logl_entry
function is responsible for aggregating these values. Users are expected to provide an implemen-
tation for getlogl_from_index, which should include network requests to retrieve log-likelihoods
calculated by each school, or for simplified prototyping purposes, could directly use a logL function
to compute likelihoods locally.

logl,_gpcm 15

Value

The sum of log-likelihoods as a single numeric value, representing the likelihood of the entire
federated dataset under the current model’s parameters.

logl_gpcm Log-Likelihood of the federated graded Model

Description

Computes the log-likelihood of the graded IRT model given item parameters and response data.
The computation utilizes numerical integration and is optimized through memoization for repeated
evaluations.

Usage

logl_gpcm(a, b, data, q = 21, lower_bound = -3, upper_bound = 3)

Arguments
a The vector of item discrimination parameters in the graded model.
b The vector of item difficulty parameters in the graded model.
data The matrix of observed responses, with individuals in rows and items in columns.
q The number of Gaussian quadrature points to use for numerical integration (de-
fault is 21). Gaussian quadrature is a numerical integration technique to ap-
proximate the integral of a function, and is particularly useful for accurate and
efficient computation.
lower_bound The lower limit for the Gaussian quadrature integration (default is -3).
upper_bound The upper limit for the Gaussian quadrature integration (default is 3).
Details

The function performs numerical integration over a set of quadrature points to calculate the proba-
bilities of the observed responses under the graded model, considering the item discrimination (a)
and difficulty (b) parameters. Memoization is used to cache computed values of the probabilities,
logits, and log-likelihoods to avoid redundant calculations and speed up the process.

Value

The computed log-likelihood of the graded model as a single numeric value.

16 runclient

memoize Memoization Function for Speed Optimization

Description

A simple memoization function that stores the results of expensive function calls and reuses those
results when the same inputs occur again. This technique greatly speeds up the computation of
fedirt function by caching previously computed values.

Usage

memoize (f)

Arguments

f Function to be memoized.

Value

Returns a memoized version of function f that will cache its previously computed results for faster
subsequent evaluations, especially beneficial when applied to fedirt.

Examples

To memoize a function, simply wrap it with ‘memoize*:
memoize(function(a,b){return(a+b)})

runclient Client for Federated IRT Model Estimation

Description

Initializes a client interface for the federated learning estimation of Item Response Theory (IRT)
model parameters, connecting to a central server to participate in collaborative parameter estima-
tion. It is essential to start the server prior to the client to ensure the client can establish a successful
connection, otherwise an error will occur.

Usage

runclient()

runserver 17

Details

The client interface, built with Shiny, provides an interactive platform that enables users to upload
response matrix data in CSV format, connect to a central server, and receive the estimation results
once the computation is complete. The client sends computed local statistics or partial results to the
server, which then aggregates information from all clients to update the global IRT model parame-
ters. Users can input the server’s IP address and port number, reconnect if needed, and visualize the
computed item and ability parameters through plots and tables displayed in the interface.

The client is capable of uploading data, processing it locally to compute log-likelihood or gradient
information, and sending these details to the server based on HTTP POST requests. The client also
includes functionality to handle responses from the server, either to signal the status of the connec-
tion or to receive and display results of the federated estimation process. Through this interactive
client-server architecture, the federated IRT model estimation becomes a seamless process, allow-
ing participants to contribute computational resources while preserving data privacy within their
local environments.

Additional client functions include local IP retrieval for network communication, server connection
initiation, response data processing, and result visualization. Interactive components built in Shiny
enable a smooth user experience and real-time updates, making the client an integral part of the
federated IRT model estimation framework.

Value
shows the discriminations and difficulties of each item and plot them. Also displays each students’
abilities.

Note

This shiny app should be used together with server version. Run server before run client, and get
the correct address from server interface to initialize the estimating process.

runserver Server for Federated IRT Model Estimation

Description

Launches a server that handles federated learning across multiple schools or institutions for the
estimation of Item Response Theory (IRT) model parameters. This server facilitates communication
between the central aggregator and distributed data sources, coordinating the data sharing process
while maintaining privacy.

Usage

runserver()

18 runserver

Details

The server establishes a federated learning environment where each participating entity (school)
computes parts of the model locally. The server then collects summary statistics from each entity
and uses them to update the global model parameters. It features a user interface for initiating
the estimation process and for displaying the results of the federated learning procedure. The user
interface provides real-time information about the connected schools, data consistency checks, and
the mode of the IRT model being estimated (binary or graded).

Function 'updateM’ checks for consistency in the number of maximum item levels across all
schools, setting a flag to indicate whether a binary or graded model should be used. Function
’check_J’ ensures that all schools have a consistent number of items in their datasets. The "ui’ func-
tion serves as the user interface for the server, while ’getLocallP’ retrieves the server’s IP address
for connections. Finally, the ’server’ function contains the logic for receiving data from schools,
triggering the estimation process, and sending the results back to participating schools.

Overall, the 'runserver’ function orchestrates the federated IRT model estimation process by com-
bining local computations from schools, managing data traffic, executing the appropriate estimation
function, and providing users with an interactive web interface.

The web interface is built using Shiny, allowing users to check connection statuses, start the estima-
tion process, and view results. It supports both GET and POST HTTP methods for handling data
exchange with clients. The server is designed to be flexible and can be adapted for various federated
learning scenarios in the education sector.

Value
No return value, called for side effects (initiates interactive Shiny server session) and display esti-
mates on the interface.

Note

This shiny app should be used together with client version.

Index

+ datasets
example_data_2PL, 2
example_data_2PL_1, 3
example_data_2PL_2, 3
example_data_graded, 4
example_data_graded_and_binary, 5

example_data_2PL, 2
example_data_2PL_1, 3
example_data_2PL_2,3
example_data_graded, 4
example_data_graded_and_binary, 5

fedirt_2PL, 5
fedirt_2PL_data, 7
fedirt_2PL_median_data, 8
fedirt_gpcm, 9
fedirt_gpcm_data, 10

g_logl, 11
g_logl_entry, 12
g_loglL_gpcm, 12

logL, 13
logl_entry, 14
logl_gpcm, 15

memoize, 16

runclient, 16
runserver, 17

19

	example_data_2PL
	example_data_2PL_1
	example_data_2PL_2
	example_data_graded
	example_data_graded_and_binary
	fedirt_2PL
	fedirt_2PL_data
	fedirt_2PL_median_data
	fedirt_gpcm
	fedirt_gpcm_data
	g_logL
	g_logL_entry
	g_logL_gpcm
	logL
	logL_entry
	logL_gpcm
	memoize
	runclient
	runserver
	Index

