Package 'vcrpart'

May 11, 2024

Type Package

Title Tree-Based Varying Coefficient Regression for Generalized Linear and Ordinal Mixed Models

Version 1.0-5

Date 2024-05-06
Author Reto Burgin [aut, cre] (https://orcid.org/0000-0002-6212-1567), Gilbert Ritschard [ctb] (https://orcid.org/0000-0001-7776-0903)
Maintainer Reto Burgin rbuergin@gmx.ch
Description Recursive partitioning for varying coefficient generalized linear models and ordinal linear mixed models. Special features are coefficient-wise partitioning, non-varying coefficients and partitioning of time-varying variables in longitudinal regression. A description of a part of this package was published by Burgin and Ritschard (2017) doi:10.18637/jss.v080.i06.
License GPL (>=2)
Depends R (>= 3.1.0), parallel, partykit
Imports stats, grid, graphics, methods, nlme (>= 3.1-123), rpart, formula.tools, numDeriv, ucminf, zoo, sandwich, strucchange

Suggests xtable, mlbench, Ecdat, RWeka
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-05-11 21:10:02 UTC

R topics documented:

contr.wsum 2
fvem 3
fvem-methods 5
movie 9
olmm 9
olmm-control 13
olmm-gefp 15
olmm-methods 17
olmm-predict 21
olmm-summary 24
otsplot 25
PL 28
poverty 29
schizo 31
tvcglm 32
tvem 35
tvem-assessment 38
tvem-control 42
tvem-methods 44
tvem-plot 47
tvcolmm 50
vcrpart-demo 53
vcrpart-formula 55
Index 58
contr.wsum Contrast matrices

Description

Returns a category-weighted contrast matrix

Usage

contr.wsum(x, weights $=$ rep.int(1.0, length $(x))$, sparse $=$ FALSE)

Arguments

$x \quad$ a factor vector
weights a vector of weights with the same length as x.
sparse ogical indicating if the result should be sparse (of class dgCMatrix), using package Matrix.

Details

Computes a contrast matrix similar to contr. sum. The reference category is however weighted by the sum of weights of the other categories.

Value

A matrix with nlevels(x) rows and nlevels(x)- 1 columns.

Author(s)

Reto Burgin

See Also

```
contr.sum
```


Examples

$x<-\operatorname{factor}(r e p(L E T T E R S[1: 3], c(10,20,30)))$
contr.wsum(x) \# standard call
contr.wsum(x, sparse = TRUE) \# using a sparse matrix
fvem Bagging and Random Forests based on tvcm

Description

Bagging (Breiman, 1996) and Random Forest (Breiman, 2001) ensemble algorithms for tvcm.

Usage

```
fvcm(..., control = fvcm_control())
fvcm_control(maxstep = 10, minsize = 10,
    folds = folds_control("subsampling", K = 100),
    mtry = 5, sctest = FALSE, alpha = 1.0,
    mindev = 0.0, verbose = TRUE, ...)
fvcolmm(..., family = cumulative(), control = fvcolmm_control())
fvcolmm_control(maxstep = 10, minsize = 20,
        folds = folds_control("subsampling", K = 100),
        mtry = 5, sctest = TRUE, alpha = 1.0,
        nimpute = 1, verbose = TRUE, ...)
fvcglm(..., family, control = fvcglm_control())
fvcglm_control(maxstep = 10, minsize = 10,
        folds = folds_control("subsampling", K = 100),
        mtry = 5, mindev = 0,
        verbose = TRUE, ...)
```


Arguments

	for fvem, fvcolmm and fvcglm arguments to be passed to tvcm. This includes at least the arguments formula, data and family, see examples below. For fvom_control further control arguments to be passed to tvcm_control. For fvcolmm_control and fvcglm_control further control arguments to be passed to fvem_control
control	a list of control parameters as produced by fvem_control.
family	the model family, e.g., binomial or cumulative.
maxstep	integer. The maximum number of steps for when growing individual trees.
folds	a list of parameters to control the extraction of subsets, as created by folds_control.
mtry	positive integer scalar. The number of combinations of partitions, nodes and variables to be randomly sampled as candidates in each iteration.
sctest	logical scalar. Defines whether coefficient constancy tests should be used for the variable and node selection in each iteration.
mindev, alpha	these parameters are merely specified to disable the default stopping rules for tvcm. See also tvcm_control for details.
minsize, nimpute	
	special parameter settings for fvcolmm. The minimum node size is set to the default of tvcolmm. The default nimpute deactivates the imputation procedure in cases of unbalanced data.
verbose	logical. Should information about the fitting process be printed to the screen?

Details

Implements the Bagging (Breiman, 1996) and Random Forests (Breiman, 2001) ensemble algorithms for $t v c m$. The method consist in growing multiple trees by using $t v c m$ and aggregating the fitted coefficient functions in the scale of the predictor function. To enable bagging, use mtry = Inf in fvem_control.
fvcolmm and fvcglm are the extensions for tvcolmm and tvcglm.
fvem_control is a wrapper of tvcm_control and the arguments indicated specify modified defaults and parameters for randomizing split selections. Notice that, relative to tvcm_control, also the cv prune arguments are internally disabled. The default arguments for alpha and maxoverstep essentially disable the stopping rules of $t v c m$, where the argument maxstep (the number of iterations i.e. the maximum number of splits) fully controls the stopping. The parameter mtry controls the randomization for selecting combinations of partitions, nodes and variables for splitting. The default of mtry $=5$ is arbitrary.

Value

An object of class $f v \mathrm{~cm}$.

Author(s)

Reto Burgin

References

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123-140.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New York, USA: Springer-Verlag.

Burgin, R. A. (2015). Tree-based methods for moderated regression with application to longitudinal data. PhD thesis. University of Geneva.

See Also

fvcm-methods, tvcm, glm, olmm

Examples

```
## ----------------------------------------------------------------------------
## Dummy example:
##
## Bagging 'tvcm' on the artificially generated data 'vcrpart_3'. The
## true coefficient function is a sinus curve between -pi/2 and pi/2.
## The parameters 'maxstep = 3' and 'K = 5' are chosen to restrict the
## computations.
## -------------------------------------------------------------------------------
## simulated data
data(vcrpart_3)
## setting parameters
control <-
    fvcm_control(maxstep = 3,
                            folds = folds_control("subsampling", K = 5, 0.5, seed = 3))
## fitting the forest
model <- fvcm(y ~ vc(z1, by = x1), data = vcrpart_3,
    family = gaussian(), control = control)
## plot the first two trees
plot(model, "coef", 1:2)
## plotting the partial dependency of the coefficient for 'x1'
plot(model, "partdep")
```

fvam-methods Methods for fvem objects

Description

Standard methods for computing on fvem objects.

Usage

```
## S3 method for class 'fvcm'
oobloss(object, fun = NULL, ranef = FALSE, ...)
## S3 method for class 'fvcm'
plot(x, type = c("default", "coef",
            "simple", "partdep"),
            tree = NULL, ask = NULL, ...)
## S3 method for class 'fvcm'
predict(object, newdata = NULL,
            type = c("link", "response", "prob", "class", "coef", "ranef"),
            ranef = FALSE, na.action = na.pass, verbose = FALSE, ...)
```


Arguments

object, $x \quad$ an object of class $f v c m$.
fun the loss function. The default loss function is defined as the sum of the deviance residuals. For a user defined function fun, see the examples of oobloss.tvcm.
newdata an optional data frame in which to look for variables with which to predict. If omitted, the training data are used.
type character string indicating the type of plot or prediction. See plot.tvcm or predict.tvcm. "response" and "prob" are identical.
tree integer vector. Which trees should be plotted.
ask logical. Whether an input should be asked before printing the next panel.
ranef logical scalar or matrix indicating whether predictions should be based on random effects. See predict. olmm.
na.action function determining what should be done with missing values for fixed effects in newdata. The default is to predict NA: see na. pass.
verbose logical scalar. If TRUE verbose output is generated during the validation.
... further arguments passed to other methods.

Details

oobloss. fvom estimates the out-of-bag loss based on predictions of the model that aggregates only those trees in which the observation didn't appear (cf. Hastie et al, 2001, sec. 15). The prediction error is computed as the sum of prediction errors obtained with fun, which are the deviance residuals by default.

The plot and the prediction methods are analogous to plot.tvem resp. predict.tvcm. Note that the plot options mean and conf. int for type $=$ "coef" are not available (and internally set to FALSE).

Further undocumented, available methods are fitted, print and ranef. All these latter methods have the same arguments as the corresponding default methods.

Value

The methods fitted.fvem and predict.fvem return an object of class numeric or matrix, depending on the used model or the specification of the argument type. See also fitted.tvcm.
The oobloss.fvcm method returns the output of the loss function defined by fun. This is a single numeric by default. See also oobloss.
The plot. fvem method returns NULL.
The ranef. fvem method returns an object of class matrix with values for the random effects. See also ranef. olmm and ranef.

Author(s)

Reto Burgin

References

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123-140.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New York, USA: Springer-Verlag.

See Also

fvcm, tvcm-methods

Examples

```
## --------------------------------------------------------------------------
## Dummy example 1:
##
## Fitting a random forest tvcm on artificially generated ordinal
## longitudinal data. The parameters 'maxstep = 1' and 'K = 2' are
## chosen to restrict the computations.
## ---------------------------------------------------------------------------
## load the data
data(vcrpart_1)
## fit and analyse the model
control <-
    fvcolmm_control(mtry = 2, maxstep = 1,
                            folds = folds_control(type = "subsampling", K = 2, prob = 0.75))
model.1 <-
    fvcolmm(y ~ -1 + wave + vc(z3, z4, by = treat, intercept = TRUE) + re(1|id),
                family = cumulative(), subset = 1:100,
                data = vcrpart_1, control = control)
```

```
## estimating the out of bag loss
suppressWarnings(oobloss(model.1))
## predicting responses and varying coefficients for subject '27'
subs <- vcrpart_1$id == "27"
## predict coefficients
predict(model.1, newdata = vcrpart_1[subs,], type = "coef")
## marginal response prediction
predict(model.1, vcrpart_1[subs,], "response", ranef = FALSE)
## conditional response prediction
re <- matrix(5, 1, 1, dimnames = list("27", "(Intercept)"))
predict(model.1, vcrpart_1[subs,], "response", ranef = re)
predict(model.1, vcrpart_1[subs,], "response", ranef = 0 * re)
## predicting in-sample random effects
head(predict(model.1, type = "ranef"))
## fitted responses (marginal and conditional prediction)
head(predict(model.1, type = "response", ranef = FALSE))
head(predict(model.1, type = "response", ranef = TRUE))
## ----------------------------------------------------------------------------- #
## Dummy example 2:
##
## Fitting a random forest tvcm on artificially generated normally
## distributed data. The parameters 'maxstep = 3' and 'K = 3' are
## chosen to restrict the computations and 'minsize = 5' to obtain at
## least a few splits given the small sample size.
## --------------------------------------------------------------------------- #
data(vcrpart_2)
## fit and analyse the model
control <- fvcm_control(mtry = 1L, minsize = 5, maxstep = 3,
                                    folds_control("subsampling", K = 3, 0.75))
model.2 <- fvcglm(y ~ -1 + vc(z1, z2, by = x1, intercept = TRUE) + x2,
    data = vcrpart_2,
    family = gaussian(), subset = 1:50, control = control)
## estimating the out of bag loss
suppressWarnings(oobloss(model.2))
## predict the coefficient for individual cases
predict(model.2, vcrpart_2[91:100, ], "coef")
```

```
movie Movie critics
```


Description

Movie critics of the Variety magazine. The data were previously used to fit adjacent-categories mixed models by Hartzl et al. (2001)

Usage

data(movie)

Format

A data frame with 372 observations on 93 movies. Three vectors contain information on
movie movie ID.
critic ordinal response on a 3 category scale, "Con" < "Mixed" < "Pro".
review critics, "Medved", "Ebert", "Siskel" and "Medved".

Source

The data are tabulated in Hartzel et al. (2001).

References

Hartzel, J., A. Agresti and B. Caffo (2001). Multinomial Logit Random Effect Models, Statistical Modelling 1(2), 81-102.
olmm Fitting ordinal and nominal two-stage linear mixed models

Description

Fits different types of two-stage linear mixed models for longitudinal (or clustered) ordinal (or multinomial) responses. O ne-stage models are also allowed. Random effects are assumed to be multivariate normal distributed with expectation 0 . At the time being, cumulative link models with the logit, probit or cauchy link, the baseline-category logit and the adjacent-category logit model are implemented. Coefficients can be category-specific (i.e. non-proportional odds effects) or global (i.e. proportional odds, or parallel effects).

The function solves the score function for coefficients of the marginal likelihood by using GaussHermite quadrature (e.g., Hedeker; 1994). Random effects are predicted by their expectation (see Hartzl et al.; 2001). Standard deviations of parameter estimates are, by default, based on the expected Fisher-information matrix.

Usage

```
cumulative(link = c("logit", "probit", "cauchy"))
adjacent(link = "logit")
baseline(link = "logit")
    olmm(formula, data, family = cumulative(),
        weights, subset, na.action = na.omit,
        offset, contrasts, control = olmm_control(), ...)
```


Arguments

formula a symbolic description of the model. This should be something like
$y \sim \operatorname{ce}(x 1)+\operatorname{ge}(x 2)+r e(1+g e(w 2) \mid i d)$
where $\mathrm{ce}(\mathrm{x} 1)$ specifies that the predictor x 1 has a category-specific i.e. nonproportional odds effect and ge (x2) that the predictor $x 2$ has global i.e. proportional odds fixed effect, see ge, resp. ce. Random effects are specified within the re term, where the variable id above behind the vertical bar | defines the subject i.e. cluster factor. Notice that only one subject factor is allowed. See details.
data an optional data frame with the variables in formula. By default the variables are taken from the environment from which olmm is called.
family an family.olmm object produced by cumulative, adjacent or baseline.
weights a numeric vector of weights with length equal the number of observations. The weights should be constant for subjects.
offset a matrix specifying the offset separately for each predictor equation, of which there are the number of categories of the response minus one.
subset, na.action, contrasts
further model specification arguments as in 1 m .
control a list of control parameters produced by olmm_control.
link character string. The name of the link function.
... arguments to be passed to control.

Details

The function can be used to fit simple ordinal two-stage mixed effect models with up to 3-4 random effects. For models with higher dimensions on random effects, the procedure may not convergence (cf. Tutz; 1996). Coefficients for the adjacent-category logit model are extracted via coefficient transformation (e.g. Agresti; 2010).

The three implemented families are defined as follows: cumulative is defined as the link of the sum of probabilities of lower categories, e.g., for link = "logit", the logit of the sum of probabilities of lower categories. adjacent is defined as the logit of the probability of the lower of two adjacent categories. baseline is defined as the logit of the probability of a category with reference to the highest category. Notice that the estimated coefficients of cumulative models may have the opposite sign those obtained with alternative software.

For alternative fitting functions, see for example the functions clmm of ordinal, nplmt of package mixcat, DPolmm of package DPpackage, lcmm of package lcmm, MCMCglmm of package MCMCglmm or OrdinalBoost of package GMMBoost.
The implementation adopts functions of the packages statmod (Novomestky, 2012) and matrixcalc (Smyth et al., 2014), which is not visible for the user. The authors are grateful for these codes.

The formula argument specifies the model to be fitted. Categorical regression models distinguish between global effects (or proportional-odds effects), which are defined with ge terms, and category-specific effects, which are defined by ce terms. For undefined terms, the function will use ge terms. Notice that this default does not necessarily yield interpretable outputs. For example, for the baseline model you may use only ce terms, which must be specified manually manually. See the example below. For cumulative models at present it is not possible to specifiy ce for the random effects component because the internal, unconstraint integration would yield unusable predictor values.

Value

olmm returns an object of class olmm. cumulative, adjacent and baseline yield an object of class family.olmm. The olmm class is a list containing the following components:

env	environment in which the object was built.
frame	the model frame.
call	the matched call to the function that created the object (class "call").
control	a list of class olmm_control produced by olmm_control.
formula	the formula of the call.
terms	a list of terms of the fitted model.
family	an object of class family. olmm that specifies that family of the fitted model.
y	(ordered) categorical response vector.
X	model matrix for the fixed effects.
W	model matrix for the random effects.
subject	a factor vector with grouping levels.
subjectName	variable name of the subject vector.
weights	numeric observations weights vector.
weights_sbj	numeric weights vector of length N .
offset	numeric offset matrix
xlevels	(only where relevant) a list of levels of the factors used in fitting.
contrasts	(only where relevant) a list of contrasts used.
dims	a named integer of dimensions. Some of the dimensions are n is the number of observations, p is the number of fixed effects per predictor and q is the total number of random effects.
fixef	a matrix of fixed effects (one column for each predictor).
ranefCholFac	a lower triangular matrix. The cholesky decomposition of the covariance matrix of the random effects.

restricted	a logical vector indicating which elements of the coefficients slot are restricted to an initial value at the estimation.
eta	a matrix of unconditional linear predictors of the fixed effects without random effects.
u	a matrix of orthogonal standardized random effects (one row for each subject level).
logLik_obs	a numeric vector of log likelihood value (one value for each observation).
logLik_sbj	a numeric vector of log likelihood values (one value for each subject level).
logLik	a numeric value. The log likelihood of the model.
score_obs	a matrix of observation-wise partial derivates of the marginal log-likelihood equation.
score_sbj	a matrix of subject-wise partial derivates of the marginal log-likelihood equation.
score	a numeric vector of (total) partial derivates of the log-Likelihood function.
info	the information matrix (default is the expected information).
ghx	a matrix of quadrature points for the Gauss-Hermite quadrature integration.
ghw	a matrix of weights for the Gauss-Hermite quadrature integration.
ranefElMat	a transformation matrix
optim	a list of arguments for calling the optimizer function.
control	a list of used control arguments produced by olmm_control.
output	the output of the optimizer (class "list").

Author(s)

Reto Burgin

References

Agresti, A. (2010). Analysis of Ordinal Categorical Data (2 ed.). New Jersey, USA: John Wiley \& Sons.
Hartzel, J., A. Agresti and B. Caffo (2001). Multinomial Logit Random Effect Models, Statistical Modelling 1(2), 81-102.
Hedeker, D. and R. Gibbons (1994). A Random-Effects Ordinal Regression Model for Multilevel Analysis, Biometrics 20(4), 933-944.
Tutz, G. and W. Hennevogl (1996). Random Effects in Ordinal Regression Models, Computational Statistics \& Data Analysis 22(5), 537-557.

Tutz, G. (2012). Regression for Categorical Data. New York, USA: Cambridge Series in Statistical and Probabilistic Mathematics.
Novomestky, F. (2012). matrixcalc: Collection of Functions for Matrix Calculations. R package version 1.0-3. URL https://CRAN.R-project.org/package=matrixcalc
Smyth, G., Y. Hu, P. Dunn, B. Phipson and Y. Chen (2014). statmod: Statistical Modeling. R package version 1.4.20. URL https://CRAN.R-project.org/package=statmod

See Also

olmm-methods, olmm_control, ordered

Examples

```
## --------------------------------------------------------------------
## Example 1: Schizophrenia
##
## Estimating the cumulative mixed models of
## Agresti (2010) chapters 10.3.1
## -------------------------------------------------------------------------
data(schizo)
model.10.3.1 <-
    olmm(imps79o ~ tx + sqrt(week) + re(1|id),
            data = schizo, family = cumulative())
summary(model.10.3.1)
## --------------------------------------------------------------------------
## Example 2: Movie critics
##
## Estimating three of several adjacent-categories
## mixed models of Hartzl et. al. (2001)
## -----------------------------------------------------------------------
data(movie)
## model with category-specific effects for "review"
model.24.1 <- olmm(critic ~ ce(review) + re(1|movie, intercept = "ce"),
                        data = movie, family = adjacent())
summary(model.24.1)
```

olmm-control
Control parameters for olmm.

Description

Various parameters that control aspects for olmm.

Usage

```
olmm_control(fit = c("nlminb", "ucminf", "optim"),
    doFit = TRUE, numGrad = FALSE,
    numHess = numGrad, nGHQ = 7L,
    start = NULL, restricted = NULL, verbose = FALSE, ...)
```


Arguments

fit character string. The name of the function to be used for the optimization. Can be one of "nlminb", "ucminf", "optim"
doFit logical scalar. When FALSE an unfitted olmm object is returned.
numGrad logical scalar indicating whether the score function should be retrieved numerically.
numHess logical scalar. Indicates whether the Hess matrix for the variance-covariance matrix should be estimated numerically, which is an approximation of the observed Fisher information. Must be TRUE if numGrad is TRUE. See details.
nGHQ a positive integer specifying the number of quadrature points for the approximation of the marginal Likelihood by numerical integration.
start a named numeric vector of initial values for the parameters. The parameter must be named in exactly in the way as they appear when the model is fitted.
restricted a character vector of names of coefficients to be restricted to the initial values. The argument is ignored in case of adjacent category models.
verbose logical scalar. If TRUE verbose output is generated during the optimization of the parameter estimates.
... further arguments to be passed to fit.

Details

Initial values may decrease the computation time and avoid divergence. The start argument accepts a vector with named elements according to the column names of the model.matrix. At the time being, initial values for adjacent-categories models must be transformed into the baselinecategory model form.

Notice that an additional argument control, e.g., control = list (trace $=1$), can be passed access control parameters of the optimizers. For arguments, see ucminf, nlminb or optim.

Value

A list of class olmm_control containing the control parameters.

Author(s)

Reto Burgin

See Also

olmm

Examples

```
olmm_control(doFit = FALSE)
```


Description

Methods to extract and pre-decorrelate the (negative) marginal maximum likelihood observation scores and compute the standardized cumulative score processes of a fitted olmm object.

Usage

```
    olmm_estfun(x, predecor = FALSE, control = predecor_control(),
        nuisance = NULL, ...)
    predecor_control(impute = TRUE, seed = NULL,
            symmetric = TRUE, center = FALSE,
            reltol = 1e-6,
                        maxit = 250L, minsize = 1L,
                        include = c("observed", "all"),
                        verbose = FALSE, silent = FALSE)
    olmm_gefp(object, scores = NULL, order.by = NULL, subset = NULL,
        predecor = TRUE, parm = NULL, center = TRUE, drop = TRUE,
        silent = FALSE, ...)
```


Arguments

x, object predecor	a fitted olmm object. logical scalar. Indicates whether the within-subject correlation of the estimating equations should be removed by a linear transformation. See details.
control	a list of control parameter as produced by predecor_control. integer vector. Defines the coefficients which are regarded as nuisance and there- fore omitted from the transformation.
nuisance	
impute	logical scalar. Whether missing values should be replaced using imputation. an integer scalar. Specifies the random number used for the set. seed call before the imputation. If set to NULL, set. seed is not processed.
seed	logical scalar. Whether the transformation matrix should be symmetric. integer scalar. The minimum number of observations for which entries in the
minsize	transformation should be computed. Higher values will lead to lower accuracy but stabilize the computation.
reltol	convergence tolerance used to compute the transformation matrix.
maxit	the maximum number of iterations used to compute the transformation matrix. logical scalar. Should the report of warnings be suppressed?

include	logical scalar. Whether the transformation matrix should be computed based on the scores corresponding to observations (option "observed") or on all scores (option "all"), including the imputed values.
verbose	logical scalar. Produces messages. a function or a matrix. Function to extract the estimating equations from object or a matrix representing the estimating equations. If NULL (default), the olmm_estfun function will be used with argument predecor and additional arguments from
scores	...
a numeric or factor vector. The explanatory variable to be used to order the	
entries in the estimating equations. If set to NULL (the default) the observations	
are assumed to be ordered.	

Details

Complements the estfun method of the package sandwich and the gefp function of the package strucchange for olmm objects. olmm_estfun allows to pre-decorrelate the intra-individual correlation of observation scores, see the argument predecor. The value returned by olmm_gefp may be used for testing coefficient constancy regarding an explanatory variable order. by by the sctest function of package strucchange, see the examples below.
If predecor = TRUE in olmm_estfun, a linear within-subject transformation is applied that removes (approximately) the intra-subject correlation from the scores. Backgrounds are provided by Burgin and Ritschard (2014a).
Given a score matrix produced by olmm_estfun, the empirical fluctuation process can be computed by olmm_gefp. See Zeileis and Hornik (2007). olmm_gefp provides with subset and parm arguments specifically designed for nodewise tests in the tvom algorithm. Using subset extracts the partial fluctuation process of the selected subset. Further, center $=$ TRUE makes sure that the partial fluctuation process (starts and) ends with zero.

Value

predecor_control returns a list of control parameters for computing the pre-decorrelation transformation matrix. olmm_estfun returns a matrix with the estimating equations and olmm_gefp a list of class class "gefp".

Author(s)

Reto Burgin

References

Zeileis A., Hornik K. (2007), Generalized M-Fluctuation Tests for Parameter Instability, Statistica Neerlandica, 61(4), 488-508.
Burgin R. and Ritschard G. (2015), Tree-Based Varying Coefficient Regression for Longitudinal Ordinal Responses. Computational Statistics \& Data Analysis, 86, 65-80.

See Also

olmm

Examples

```
## --------------------------------------------------------------------------
## Dummy example :
##
## Testing coefficient constancy on 'z4' of the 'vcrpart_1' data.
## --------------------------------------------------------------------------
data(vcrpart_1)
## extract a unbalanced subset to show to the full functionality of estfun
vcrpart_1 <- vcrpart_1[-seq(1, 100, 4),]
subset <- vcrpart_1$wave != 1L ## obs. to keep for fluctuation tests
table(table(vcrpart_1$id))
## fit the model
model <- olmm(y ~ treat + re(1|id), data = vcrpart_1)
## extract and pre-decorrelate the scores
scores <- olmm_estfun(
    model, predecor = TRUE,
    control = predecor_control(verbose = TRUE))
attr(scores, "T") # transformation matrix
## compute the empirical fluctuation process
fp <- olmm_gefp(model, scores, order.by = vcrpart_1$z4)
## process a fluctuation test
library(strucchange)
sctest(fp, functional = catL2BB(fp))
```

olmm-methods Methods for olmm objects

Description

Standard methods for computing on olmm objects.

Usage

```
## S3 method for class 'olmm'
anova(object, ...)
## S3 method for class 'olmm'
coef(object, which = c("all", "fe"), ...)
## S3 method for class 'olmm'
fixef(object, which = c("all", "ce", "ge"), ...)
## S3 method for class 'olmm'
model.matrix(object, which = c("fe", "fe-ce", "fe-ge",
                                    "re", "re-ce", "re-ge"), ...)
## S3 method for class 'olmm'
neglogLik2(object, ...)
## S3 method for class 'olmm'
ranef(object, norm = FALSE, ...)
## S3 method for class 'olmm'
ranefCov(object, ...)
## S3 method for class 'olmm'
simulate(object, nsim = 1, seed = NULL,
        newdata = NULL, ranef = TRUE, ...)
## S3 method for class 'olmm'
terms(x, which = c("fe-ce", "fe-ge", "re-ce", "re-ge"), ...)
## S3 method for class 'olmm'
VarCorr(x, sigma = 1., ...)
## S3 method for class 'olmm'
weights(object, level = c("observation", "subject"), ...)
```


Arguments

object, x an olmm object.
which optional character string. For coef and fixef, it indicates whether "all" coefficients, the fixed effects "fe", the category-specific fixed effects "ce" (i.e. non-proportional odds) or the global fixed effects "ge" (i.e. proportional odds) should be extracted. For model.matrix it indicates whether the model matrix of the fixed- ("fe") or the random effects ("re") should be extracted.
level character string. Whether the results should be on the observation level (level = "observation") or on the subject level (level = "subject").
norm logical. Whether residuals should be divided by their standard deviation.
olmm-methods

Details

anova implements log-likelihood ratio tests for model comparisons, based on the marginal likelihood. At the time being, at least two models must be assigned.
neglogLik2 returns the marginal maximum likelihood of the fitted model times minus 2.
ranefCov extracts the variance-covariance matrix of the random effects. Similarly, VarCorr extracts the estimated variances, standard deviations and correlations of the random effects.
resid extracts the residuals of Li and Sheperd (2012). By default, the marginal outcome distribution is used to compute these residuals. The conditional residuals can be computed by assigning ranef $=$ TRUE as a supplementary argument.
simulate simulates ordinal responses based on the input model.
Further, undocumented methods are deviance, extractAIC, fitted, formula, getCall, logLik, model. frame, nobs, update, vcov.
The anova implementation is based on codes of the lme4 package. The authors are grateful for these codes.

Value

The anova. olmm method returns an object of class anova, see also anova.
The coef.olmm, coefficients.olmm, fixef, fixef.glm and fixef.olmm methods return named numeric vectors. See also coef and coefficients.
The deviance. olmm method returns a single numeric, see also deviance.
The formula.olmm method extracts the model formula, which is an object of class formula. See also formula.
The getCall.olmm method extracts the call for fitting the model, which is an object of class call. See also call.

The logLik.olmm method returns an object of class logLik, which is a single numeric with a few attributes. See also logLik.
The neglogLik2 and neglogLik2.olmm methods return a single numeric.
The model.frame.olmm and model.matrix.olmm methods return the model frame and the model matrix of the olmm object. See also model.frame and model. matrix.

The ranef and ranef. olmm methods return a matrix with the estimated random effects.
The ranefCov and ranefCov.olmm methods return an object of class matrix. The VarCorr and VarCorr.olmm methods return an object of class VarCorr.olmm. print. VarCorr.olmm returns an object of class VarCorr .olmm.
The resid.olmm and residuals.olmm methods return a numeric vector.
The simulate.olmm method returns a data.frame including simulated responses based on the input model.
The terms.olmm method returns an object of class terms. See also terms.
The update. olmm method will update and (by default) re-fit a model. It returns an object of class olmm. See also update.
The vcov.olmm method extracts a matrix with the variances and covariances of the fixed effects of the model. See also vcov.
The weights.olmm method extracts a numeric vector with the model weights. See also weights.

Author(s)

Reto Burgin

References

Agresti, A. (2010). Analysis of Ordinal Categorical Data (2 ed.). New Jersey, USA: John Wiley \& Sons.

Tutz, G. (2012). Regression for Categorical Data. New York, USA: Cambridge Series in Statistical and Probabilistic Mathematics.
Li, C. and B. E. Sheperd (2012). A New Residual for Ordinal Outcomes, Biometrika, 99(2), 437480.

Bates, D., M. Maechler, B. M. Bolker and S. Walker (2015). Fitting Linear Mixed-Effects Models Using lme4, Journal of Statistical Software, 67(1), 1-48.

See Also

olmm, predict.olmm, olmm_gefp

Examples

```
## -------------------------------------------------------------
## Example: Schizophrenia (see also example of 'olmm')
## -----------------------------------------------------------
data(schizo)
schizo <- schizo[1:181,]
schizo$id <- droplevels(schizo$id)
## anova comparison
## ----------------
```

```
## fit two alternative models for the 'schizo' data
model.0 <- olmm(imps79o ~ tx + sqrt(week) + re(1|id), schizo)
model.1 <- olmm(imps79o ~ tx + sqrt(week)+tx*sqrt(week)+re(1|id),schizo)
anova(model.0, model.1)
## simulate responses
## -----------------
## simulate responses based on estimated random effects
simulate(model.0, newdata = schizo[1, ], ranef = TRUE, seed = 1)
simulate(model.0, newdata = schizo[1, ], seed = 1,
    ranef = ranef(model.0)[schizo[1, "id"],,drop=FALSE])
## simulate responses based on simulated random effects
newdata <- schizo[1, ]
newdata$id <- factor("123456789")
simulate(model.0, newdata = newdata, ranef = TRUE)
## other methods
## -------------
coef(model.1)
fixef(model.1)
head(model.matrix(model.1, "fe-ge"))
head(weights(model.1))
ranefCov(model.1)
head(resid(model.1))
terms(model.1, "fe-ge")
VarCorr(model.1)
head(weights(model.1, "subject"))
```


Description

fitted and predict method for olmm objects. The function implements mainly the prediction methods of Skrondal and Rabe-Hesketh (2009).

Usage

```
## S3 method for class 'olmm'
fitted(object, ...)
## S3 method for class 'olmm'
predict(object, newdata = NULL,
    type = c("link", "response", "prob", "class", "ranef"),
    ranef = FALSE, na.action = na.pass, ...)
```


Arguments

$$
\left.\begin{array}{ll}
\text { object } & \text { a fitted olmm object. } \\
\text { newdata } & \begin{array}{l}
\text { data frame for which to evaluate predictions. } \\
\text { character string. type }=" r e s p o n s e " ~ a n d ~ t y p e ~=~ " p r o b " ~ y i e l d ~ r e s p o n s e ~ p r o b-~
\end{array} \\
\text { abilities, type }=\text { "class" the response category with highest probability and } \\
\text { type }=\text { "link" the linear predictor matrix. type = "ranef" yields the predicted } \\
\text { random effects, see ranef.olmm. }
\end{array}\right] \begin{aligned}
& \text { logical or numeric matrix. See details. } \\
& \text { ranef } \\
& \text { na.action }
\end{aligned} \begin{aligned}
& \text { function determining what should be done with missing values for fixed effects } \\
& \text { in newdata. The default is to predict NA: see na. pass. }
\end{aligned}
$$

Details

If type = "link" and ranef = FALSE, the fixed effects components are computed. The random effect components are ignored.
If type $=$ "link" and ranef $=$ TRUE, the fixed effect components plus the random effect components are computed. The function will look for whether random coefficients are available for the subjects (i.e. clusters) in newdata. If so, it extracts the corresponding random effects as obtained by ranef. For new subjects in newdata the random effects are set to zero. If newdata does not contain a subject vector, the random effects are set to zero.

If type = "link" and ranef is a matrix, the fixed effect components plus the random effect components with the random coefficients from the assigned matrix are computed. Notice that newdata should contain a subject vector to assign the random coefficients. This prediction method is, amongst others, proposed in Skrondal and Rabe-Hesketh (2009), Sec. 7.1.

The two options type = "response" and type = "prob" are identical and type = "class" extracts the response category with the highest probability. Hence, the prediction mechanism is the same for all three options.
Given newdata contains a subject vector, type = "response" combined with ranef = FALSE yields for new subjects the population-averaged response probabilities (Skrondal and Rabe-Hesketh, Sec. 7.2) and for existing subjects the cluster-averaged prediction (Skrondal and Rabe-Hesketh 2009, Sec. 7.3). If no subject vector is assigned the function assumes that all subjects are new and therefore yields the population-averaged response probabilities (Skrondal and Rabe-Hesketh 2009, Sec. 7.2).
The option type $=$ "response" combined with ranef $=$ TRUE works equivalent to type $=" l i n k "$ combined with ranef = TRUE.

If the model does not contain random effects, the argument ranef is ignored.

Value

A matrix or a vector of predicted values or response probabilities.

Note

The method can not yet handle new categories in categorical predictors and will return an error.

Author(s)

Reto Burgin

References

Skrondal, A., S. Rabe-Hesketh (2009). Prediction in Multilevel Generalized Linear Models. Journal of the Royal Statistical Society A, 172(3), 659-687.

See Also

olmm, olmm-methods

Examples

```
## ------------------------------------------------------------------------------}
## Example: Schizophrenia
## --------------------------------------------------------------------------
data(schizo)
## omit subject 1103 and the last observations of 1104 and 1105
subs <- c(1:4, 8, 11)
dat.train <- schizo[-subs, ] # training data
dat.valid <- schizo[ subs, ] # test data
## fit the model
model <- olmm(imps79o ~ tx + sqrt(week) + tx:sqrt(week) + re(1|id), dat.train)
## prediction on the predictor scale
## --------------------------------
## random effects are set equal zero
predict(model, newdata = dat.valid, type = "link", ranef = FALSE)
## .. or equally with self-defined random effects
ranef <- matrix(0, 3, 1)
rownames(ranef) <- c("1103", "1104", "1105")
predict(model, newdata = dat.valid, type = "link", ranef = ranef)
## use random effects for the subjects 1104 and 1105.
predict(model, newdata = dat.valid, type = "link", ranef = TRUE)
## prediction on the response scale
## ---------------------------------
## use random effects for the subjects 1104 and 1105.
predict(model, newdata = dat.valid, type = "response", ranef = FALSE)
predict(model, newdata = dat.valid, type = "prob", ranef = FALSE) # . . or, equally
predict(model, newdata = dat.valid, type = "class", ranef = FALSE)
## treat all individuals as new (subject vector is deleted)
```

```
predict(model, newdata = dat.valid[,-1], type = "response", ranef = FALSE)
## use random effects for the subjects 1104 and 1105.
predict(model, newdata = dat.valid, type = "response", ranef = TRUE)
## use self defined random effects
ranef <- matrix(0, 3, 1)
rownames(ranef) <- c("1103", "1104", "1105")
predict(model, newdata = dat.valid, type = "response", ranef = ranef)
## predict random effects
## ----------------------
head(predict(model, type = "ranef"))
head(ranef(model)) # .. or, equally
```


olmm-summary
 Printing and summarizing olmm objects

Description

Generates summary results of a fitted olmm object.

Usage

\#\# S3 method for class 'olmm'
summary(object, etalab = c("int", "char", "eta"), silent = FALSE, ...)
\#\# S3 method for class 'olmm'
print(x, etalab = c("int", "char", "eta"), ...)

Arguments

object, x
etalab character. Whether category-specific effects should be labeled by integers of categories (default), the labels of the categories or the index of the predictor.
silent logical: should a warning be reported if the computation of the covariance matrix for the estimated coefficients failed.
... additional arguments passed to print.

Value

The summary method returns a list of class "summary. olmm".

Author(s)

Reto Burgin

See Also

olmm, olmm-methods

Examples

```
## -----------------------------------------------------------------------------
## Dummy example:
##
## Printing the summary of a model on artificially generated data.
## -------------------------------------------------------------------------}
data(vcrpart_1)
model <- olmm(y ~ wave + z4:treat + re(1|id), vcrpart_1, subset = 1:60)
print(model, digits = 2)
summary(model, digits = 2)
```

```
otsplot Time-series plot for longitudinal ordinal data
```


Description

Plots multiple ordinal sequences in a x (usually time) versus y (response variable) scatterplot. The sequences are displayed by jittered frequency-weighted parallel lines.

Usage

```
## Default S3 method:
otsplot(x, y, subject, weights, groups,
    control = otsplot_control(), filter = NULL,
    main, xlab, ylab, xlim, ylim, ...)
otsplot_control(cex = 1, lwd = 1/4, col = NULL,
        hide.col = grey(0.8), seed = NULL,
        lorder = c("background", "foreground") ,
        lcourse = c("upwards", "downwards"),
        grid.scale = 1/5, grid.lwd = 1/2,
        grid.fill = grey(0.95), grid.col = grey(0.6),
        layout = NULL, margins = c(5.1, 4.1, 4.1, 3.1),
        strip.fontsize = 12, strip.fill = grey(0.9),
        pop = TRUE, newpage = TRUE, maxit = 500L)
otsplot_filter(method = c("minfreq", "cumfreq", "linear"), level = NULL)
```


Arguments

x	a numeric or factor vector for the x axis, e.g. time.
y	an ordered factor vector for the y axis.
subject	a factor vector that identifies the subject, i.e., allocates elements in x and y to the subject i.e. observation unit.
weights	a numeric vector of weights of length equal the number of subjects.
groups	a numeric or factor vector of group memberships of length equal the number of subjects. When specified, one panel is generated for each distinct membership value.
control	control parameters produced by otsplot_control, such as line colors or the scale of translation zones.
filter main, xlab, ylab	an otsplot_filter object which defines line coloring options. See details.
	title and axis labels for the plot.
xlim, ylim	the x limits $\mathrm{c}(\mathrm{x} 1, \mathrm{x} 2)$ resp. y limits ($\mathrm{y} 1, \mathrm{y} 2)$.
	additional undocumented arguments.
cex	expansion factor for the squared symbols.
lwd	expansion factor for line widths. The expansion is relative to the size of the squared symbols.
col	color palette vector for line coloring.
hide.col seed	Color for ordinal time-series filtered-out by the filter specification in otsplot. an integer specifying which seed should be set at the beginning.
lorder	line ordering. Either "background" or "foreground".
lcourse	Method to connect simultaneous elements with the preceding and following ones. Either "upwards" (default) or "downwards".
grid.scale	expansion factor for the translation zones.
grid.lwd	expansion factor for the borders of translation zones.
grid.fill	the fill color for translation zones.
grid.col	the border color for translation zones.
strip.fontsize	fontsize of titles in stripes that appear when a groups vector is assigned.
strip.fill	color of strips that appear when a groups vector is assigned.
layout	an integer vector $c(n r, n c)$ specifying the number of rows and columns of the panel arrangement when the groups argument is used.
margins	a numeric vector c(bottom, left, top, right) specifying the space on the margins of the plot. See also the argument mar in par.
pop	logical scalar. Whether the viewport tree should be popped before return.
newpage	logical scalar. Whether grid. newpage() should be called previous to the plot.
maxit	maximal number of iteration for the algorithm that computes the translation arrangement.
method	character string. Defines the filtering function. Available are "minfreq", "cumfreq" and "linear".
level	numeric scalar between 0 and 1 . The frequency threshold for the filtering methods "minfreq" and "cumfreq".

Details

The function is a scaled down version of the seqpcplot function of the TraMineR package, implemented in the grid graphics environment.
The filter argument serves to specify filters to fade out less interesting patterns. The filtered-out patterns are displayed in the hide. col color. The filter argument expects an object produced by otsplot_filter.
otsplot_filter("minfreq", level = 0.05) colors patterns with a support of at least 5\% (within a group). otsplot_filter ("cumfreq", level $=0.75$) highlight the 75% most frequent patterns (within group). otsplot_filter("linear") linearly greys out patterns with low support.
The implementation adopts a color palette which was originally generated by the colorspace package (Ihaka et al., 2013). The authors are grateful for these codes.

Value

otsplot returns an object of class otsplot.
otsplot_control returns an object of class otsplot_control and otsplot_filter an object of class otsplot_filter. Both these object types are specifically designed as input arguments of otsplot.

Author(s)

Reto Burgin and Gilbert Ritschard

References

Burgin, R. and G. Ritschard (2014). A Decorated Parallel Coordinate Plot for Categorical Longitudinal Data, The American Statistician 68(2), 98-103.
Ihaka, R., P. Murrell, K. Hornik, J. C. Fisher and A. Zeileis (2013). colorspace: Color Space Manipulation. R package version 1.2-4. URL https://CRAN.R-project.org/package=colorspace.

Examples

```
## ----------------------------------------------------------------------------- #
## Dummy example:
##
## Plotting artificially generated ordinal longitudinal data
## ------------------------------------------------------------------------- #
## load the data
data(vcrpart_1)
vcrpart_1 <- vcrpart_1[1:40,]
## plot the data
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id)
## using 'groups'
groups <- rep(c("A", "B"), each = nrow(vcrpart_1) / 2L)
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,
    groups = groups)
```

```
## color series with supports over 30%
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,
    filter = otsplot_filter("minfreq", level = 0.3))
## highlight the 50% most frequent series
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,
    filter = otsplot_filter("cumfreq", level = 0.5))
## linearly grey out series with low support
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y, subject = vcrpart_1$id,
    filter = otsplot_filter("linear"))
## subject-wise plot
otsplot(x = vcrpart_1$wave, y = vcrpart_1$y,
    subject = vcrpart_1$id, groups = vcrpart_1$id)
```

PL Effect of parental leave policy

Description

Data to analyze the effect of the 1990 Austrian parental leave reform on fertility and postbirth labor market careers. The data originate from the Austrian Social Security Database (ASSD) and where prepared by Lalive and Zweimueller (2009). The sample includes 6' 180 women giving a childbirth (the first birth recorded in the ASSD data) between June and July 1990 and were eligible to benefit from the parental leave program.

Usage

data(PL)

Format

A data frame with 6' 180 observations on the following variables
uncb3 binary. Additional birth 0-36 months after child birth.
uncb10 binary. Additional birth 0-120 months after child birth.
uncj3 binary. Return-to-work 0-36 months after child birth.
uncj10 numeric. Return-to-work 0-120 months after child birth.
pbexp10 numeric. Employment (months/yr), 37-120 months after child birth.
pbinc_tot10 numeric. Earnings (EUR/month), 37-120 months after child birth.
pbexp3 numeric. Employment (months/yr), 0-36 months after child birth.
pbinc_tot3 numeric. Earnings (EUR/month), 0-36 months after child birth.
ikar3 numeric. Length of parental leave of the first year after birth.
ikar4 numeric. Length of parental leave of the second year after birth.
july binary treatment variable. Indicates whether the child considered (the first recorded in the ASSD data) was born in June 1990 or in July 1990.
bd child's birthday.
workExp years in employment prior to birth.
unEmpl years in unemployment prior to birth.
zeroLabEarn factor. Whether women has earnings at birth.
laborEarnings numeric. Earnings at birth.
employed factor. Whether the woman was employed in 1989.
whiteCollar factor. Whether woman is white collar worker.
wage numeric. Daily 1989 earnings.
age ordered factor. Age.
industry, industry. SL factor. Industry where woman worked.
region, region. SL factor. The region where the woman lives.

Details

The data are described in Lalive and Zweimueller (2009).

Source

Austrian Social Security Database (ASSD). The data set is also available from https://sites. google.com/site/rafaellalive/research

References

Lalive, R. and J. Zweimueller (2009). Does Parental Leave Affect Fertility and Return-to-Work? Evidence from Two Natural Experiments. The Quarterly Journal of Economics 124(3), 1363-1402.
poverty Poverty in Switzerland

Description

Poverty measurements of elderly people (older than the Swiss legal retirement age) in Switzerland. The data are the (complete) subsample of participants of the canton Valais of the Vivre-LebenVivere (VLV) survey data.

Usage

data(poverty)

Format

A data frame with 576 observations on the following variables
Poor binary response variable on whether the person is considered as poor or not. $0=$ no and $1=$ yes.
Canton the canton where the person lives. All individuals origin from the canton Wallis.
Gender whether person is a male or a female.
AgeGroup to which age group the person belongs to.
Edu ordered 3-category measurement on the persons education.
CivStat civil status.
NChild number of children.
Working whether the person is still working (even though all persons are in the legal retirement age).

FirstJob 5-category classification of the person's first job.
LastJob 5-category classification of the person's last job.
Origin whether the person origins from Switzerland or a foreign country.
SocMob whether and how the person has changed his social status over the life span.
RetirTiming timing of the retirement relative to the legal retirement age.
ProfCar 4-category classification of the professional carrier. Possible are "full employment", "missing / early retirement", "start and stop" and "stop and restart". The classification was retrieved from a longitudinal cluster analysis on the professional carriers in Gabriel et. al. (2014).

Pension 5-category classification of the pension plan. Number refer to the Swiss pension threepillar system.
TimFirstChild timing of first child relative to the average timing of the first child of the same age group.

Details

Poverty is defined by a threshold of 2400 Swiss francs per person in the household. Specifically, the poverty variable was retrieved from a self-rated ordinal variable with nine categories on household income and was adjusted by the OECD equivalence scales methodology (see https://www. oecd. org/economy/growth/OECD-Note-EquivalenceScales.pdf) to account for the household size.

The variables Canton, Gender and AgeGroup represent the stratification variables of the survey design.
The data include a significant number of missings, in particular for Poor and RetirTiming. The authors are grateful to Rainer Gabriel, Michel Oris and the Centre interfacultaire de gerontologie et d'etudes des vulnerabilites (CIGEV) at the University of Geneva for providing the prepared data set.

Source

VLV survey
schizo

References

Ludwig, C., S. Cavalli and M. Oris 'Vivre/Leben/Vivere': An interdisciplinary survey addressing progress and inequalities of ageing over the past 30 years in Switzerland. Archives of Gerontology and Geriatrics.
Gabriel, R., M. Oris, M. Studer and M. Baeriswyl (2015). The Persistance of Social Stratification? Swiss Journal of Sociology, 41(3), 465-487.
schizo National Institute of Mental Health shizophrenia study

Description

Schizophrenia data from a randomized controlled trial with patients assigned to either drug or placebo group. "Severity of Illness" was measured, at weeks $0,1, \ldots, 6$, on a four category ordered scale. Most of the observations where made on weeks $0,1,3$, and 6 .

Usage

data(schizo)

Format

A data frame with 1603 observations on 437 subjects. Five vectors contain information on
id patient ID.
imps79 original response measurements on a numerical scale.
imps79o ordinal response on a 4 category scale, "normal or borderline mentally ill" < "mildly or moderately ill", "markedly ill", "severely or among the most extremely ill".
tx treatment indicator: 1 for drug, 0 for placebo.
week week.

Details

The documentation file was copied from the mixcat package and slightly modified.

Source

https://hedeker.people.uic.edu/ml.html

References

Hedeker, D. and R. Gibbons (2006). Longitudinal Data Analysis. New Jersey, USA: John Wiley \& Sons.

Coefficient-wise tree-based varying coefficient regression based on generalized linear models

Description

The tvcglm function implements the tree-based varying coefficient regression algorithm for generalized linear models introduced by Burgin and Ritschard (2017). The algorithm approximates varying coefficients by piecewise constant functions using recursive partitioning, i.e., it estimates the selected coefficients individually by strata of the value space of partitioning variables. The special feature of the provided algorithm is that it allows building for each varying coefficient an individual partition, which enhances the possibilities for model specification and to select partitioning variables individually by coefficient.

Usage

```
tvcglm(formula, data, family,
        weights, subset, offset, na.action = na.omit,
        control = tvcglm_control(), ...)
tvcglm_control(minsize = 30, mindev = 2.0,
            maxnomsplit = 5, maxordsplit = 9, maxnumsplit = 9,
            cv = TRUE, folds = folds_control("kfold", 5),
            prune = cv, fast = TRUE, center = fast,
    maxstep = 1e3, verbose = FALSE, ...)
```


Arguments

formula	a symbolic description of the model to fit, e.g., $y \sim v c(z 1, z 2, z 3)+v c(z 1, z 2, b y=x 1)+v c(z 2, z 3, b y=x 2)$ where the vc terms specify the varying fixed coefficients. The unnamed argu- ments within vc terms are interpreted as partitioning variables (i.e., moderators). The by argument specifies the associated predictor variable. If no such predictor variable is specified (e.g., see the first term in the above example formula), the $v c$ term is interpreted as a varying intercept, i.e., an nonparametric estimate of the direct effect of the partitioning variables. For details, see vcrpart-formula. Note that the global intercept may be removed by a -1 term, according to the desired interpretation of the model.
family	the model family. An object of class family.
data	a data frame containing the variables in the model. weights an optional numeric vector of weights to be used in the fitting process.
offset	an optional logical or integer vector specifying a subset of 'data' to be used in the fitting process.
	this can be used to specify an a priori known component to be included in the linear predictor during fitting.

na.action	a function that indicates what should happen if data contain NAs. The default na. action = na.omit is listwise deletion, i.e., observations with missings on any variable are dropped. See na. action.
control	a list with control parameters as returned by tvcglm_control, or by tvcm_control for advanced users.
minsize	numeric (vector). The minimum sum of weights in terminal nodes.
mindev	numeric scalar. The minimum permitted training error reduction a split must exhibit to be considered of a new split. The main role of this parameter is to save computing time by early stopping. May be set lower for very few partitioning variables resp. higher for many partitioning variables.
maxnomsplit, maxordsplit, maxnumsplit	
	integer scalars for split candidate reduction. See tvcm_control
cv	logical scalar. Whether or not the cp parameter should be cross-validated. If TRUE cvloss is called.
folds	a list of parameters to create folds as produced by folds_control. Is used for cross-validation.
prune	logical scalar. Whether or not the initial tree should be pruned by the estimated cp parameter from cross-validation. Cannot be TRUE if cv = FALSE.
fast	logical scalar. Whether the approximative model should be used to search for the next split. The approximative search model uses only the observations of the node to split and incorporates the fitted values of the current model as offsets. Therewith the estimation is reduces to the coefficients of the added split. If FALSE, the accurate search model is used.
center	logical integer. Whether the predictor variables of update models during the grid search should be centered. Note that TRUE will not modify the predictors of the fitted model.
maxstep	integer. The maximum number of iterations i.e. number of splits to be processed.
verbose	logical. Should information about the fitting process be printed to the screen?
	additional arguments passed to the fitting function fit or to tvcm_control.

Details

tvcglm processes two stages. The first stage, called partitioning stage, builds overly fine partitions for each vc term; the second stage, called pruning stage, selects the best-sized partitions by collapsing inner nodes. For details on the pruning stage, see tvcm-assessment. The partitioning stage iterates the following steps:

1. Fit the current generalized linear model
y ~NodeA: x1 + . . . + NodeK: xK
with glm, where Nodek is a categorical variable with terminal node labels for the k-th varying coefficient.
2. Search the globally best split among the candidate splits by an exhaustive -2 likelihood training error search that cycles through all possible splits.
3. If the -2 likelihood training error reduction of the best split is smaller than mindev or there is no candidate split satisfying the minimum node size minsize, stop the algorithm.
4. Else incorporate the best split and repeat the procedure.

The partitioning stage selects, in each iteration, the split that maximizes the -2 likelihood training error reduction, compared to the current model. The default stopping parameters are minsize $=30$ (a minimum node size of 30) and mindev $=2$ (the training error reduction of the best split must be larger than two to continue).

The algorithm implements a number of split point reduction methods to decrease the computational complexity. See the arguments maxnomsplit, maxordsplit and maxnumsplit.
The algorithm can be seen as an extension of CART (Breiman et. al., 1984) and PartReg (Wang and Hastie, 2014), with the new feature that partitioning can be processed coefficient-wise.

Value

An object of class tvcm

Author(s)

Reto Burgin

References

Breiman, L., J. H. Friedman, R. A. Olshen and C.J. Stone (1984). Classification and Regression Trees. New York, USA: Wadsworth.
Wang, J. C., Hastie, T. (2014), Boosted Varying-Coefficient Regression Models for Product Demand Prediction, Journal of Computational and Graphical Statistics, 23(2), 361-382.

Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression with verpart. Journal of Statistical Software, 80(6), 1-33.

See Also

tvcm_control, tvcm-methods, tvcm-plot, tvcm-plot, tvcm-assessment, fvcglm, glm

Examples

```
## -----------------------------------------------------------------------
## Example: Moderated effect of education on poverty
##
## The algorithm is used to find out whether the effect of high
## education 'EduHigh' on poverty 'Poor' is moderated by the civil
## status 'CivStat'. We specify two 'vc' terms in the logistic
## regression model for 'Poor': a first that accounts for the direct
## effect of 'CivStat' and a second that accounts for the moderation of
## 'CivStat' on the relation between 'EduHigh' and 'Poor'. We use here
## the 2-stage procedure with a partitioning- and a pruning stage as
## described in Burgin and Ritschard (2017).
## ----------------------------------------------------------------------
data(poverty)
poverty$EduHigh <- 1 * (poverty$Edu == "high")
```

```
## fit the model
model.Pov <-
    tvcglm(Poor ~ -1 + vc(CivStat) + vc(CivStat, by = EduHigh) + NChild,
        family = binomial(), data = poverty, subset = 1:200,
        control = tvcm_control(verbose = TRUE, papply = lapply,
            folds = folds_control(K = 1, type = "subsampling", seed = 7)))
```

\#\# diagnosis
plot(model.Pov, "cv")
plot(model.Pov, "coef")
summary (model.Pov)
splitpath(model.Pov, steps $=1: 3$)
prunepath(model.Pov, steps $=1$)
tvcm Tree-based varying coefficient regression models

Description

tvam is the general implementation for tree-based varying coefficient regression. It may be used to combine the two different algorithms tvcolmm and tvcglm.

Usage

tvcm(formula, data, fit, family, weights, subset, offset, na.action = na.omit, control = tvcm_control(), fitargs, ...)

Arguments

formula a symbolic description of the model to fit, e.g., $y \sim v c(z 1, z 2)+v c(z 1, z 2, b y=x)$
where vc specifies the varying coefficients. See vcrpart-formula.
fit a character string or a function that specifies the fitting function, e.g., olmm or glm.
family the model family, e.g., an object of class family.olmm or family.
data a data frame containing the variables in the model.
weights an optional numeric vector of weights to be used in the fitting process.
subset an optional logical or integer vector specifying a subset of 'data' to be used in the fitting process.
offset this can be used to specify an a priori known component to be included in the linear predictor during fitting.
na.action a function that indicates what should happen if data contain NAs. The default na. action $=$ na.omit is listwise deletion, i.e., observations with missings on any variable are dropped. See na. action.

control	a list with control parameters as returned by tvcm_control.
fitargs	additional arguments passed to the fitting function fit.
\ldots	additional arguments passed to the fitting function fit. Note that using the fitargs argument is the preferred way to for this.

Details

TVCM partitioning works as follows: In each iteration we fit the current model and select a binary split for one of the current terminal nodes. The selection requires 4 decisions: the vc term, the node, the variable and the cutpoint in the selected variable. The algorithm starts with $M_{k}=1$ node for each of the K vc terms and iterates until the criteria defined by control are reached, see $t v c m _c o n t r o l$. For the specific criteria for the split selection, see tvcolmm and tvcglm.
Alternative tree-based algorithm to tvcm are the MOB (Zeileis et al., 2008) and the PartReg (Wang and Hastie, 2014) algorithms. The MOB algorithm is implemented by the mob function in the packages party and partykit. For smoothing splines and kernel regression approaches to varying coefficients, see the packages mgcv, svem,mboost or np.
The tvcm function builds on the software infrastructure of the partykit package. The authors are grateful for these codes.

Value

An object of class tvcm. The tvcm class itself is based on the party class of the partykit package. The most important slots are:

node	an object of class partynode.
data	a data.frame. The model frame with all variables for partitioning.
fitted	an optional data. frame containing at least the fitted terminal node identifiers as element (fitted). In addition, weights may be contained as element (weights) and responses as (response).
info	additional information including control, model and data (all untransformed data, without missings).

Author(s)

Reto Burgin

References

Zeileis, A., T. Hothorn, and K. Hornik (2008). Model-Based Recursive Partitioning. Journal of Computational and Graphical Statistics, 17(2), 492-514.
Wang, J. C. and T. Hastie (2014), Boosted Varying-Coefficient Regression Models for Product Demand Prediction, Journal of Computational and Graphical Statistics, 23(2), 361-382.
Hothorn, T. and A. Zeileis (2014). partykit: A Modular Toolkit for Recursive Partytioning in R. In Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Number 2014-10. Universitaet Innsbruck.

Burgin R. and Ritschard G. (2015), Tree-Based Varying Coefficient Regression for Longitudinal Ordinal Responses. Computational Statistics \& Data Analysis, 86, 65-80.

Burgin, R. A. (2015b). Tree-based methods for moderated regression with application to longitudinal data. PhD thesis. University of Geneva.
Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression with verpart. Journal of Statistical Software, 80(6), 1-33.

See Also

tvcolmm, tvcglm, tvcm_control, tvcm-methods, tvcm-plot, tvcm-assessment

Examples

```
## --------------------------------------------------------------------------
## Example 1: Moderated effect of education on poverty
##
## See the help of 'tvcglm'.
## -------------------------------------------------------------------------
data(poverty)
poverty$EduHigh <- 1 * (poverty$Edu == "high")
## fit the model
model.Pov <-
    tvcm(Poor ~ -1 + vc(CivStat) + vc(CivStat, by = EduHigh) + NChild,
            family = binomial(), data = poverty, subset = 1:200,
            control = tvcm_control(verbose = TRUE, papply = "lapply",
                folds = folds_control(K = 1, type = "subsampling", seed = 7)))
## diagnosis
plot(model.Pov, "cv")
plot(model.Pov, "coef")
summary(model.Pov)
splitpath(model.Pov, steps = 1:3)
prunepath(model.Pov, steps = 1)
```

\#\# -- \#
\#\# Example 2: Moderated effect effect of unemployment
\#\#
\#\# See the help of 'tvcolmm'.
\#\# -- \#
data(unemp)
\#\# fit the model
model.UE <-
tvcm(GHQL ~ -1 +
vc(AGE, FISIT, GENDER, UEREGION, by = UNEMP, intercept = TRUE) +
re(1|PID),
data $=$ unemp, control $=$ tvcm_control (sctest $=$ TRUE),
family = cumulative())

```
## diagnosis (no cross-validation was performed since 'sctest = TRUE')
plot(model.UE, "coef")
summary(model.UE)
splitpath(model.UE, steps = 1, details = TRUE)
```

tvcm-assessment Model selection utility functions for tvcm objects.

Description

Pruning, cross-validation to find the optimal pruning parameter and computing validation set errors for tvem objects.

Usage

```
## S3 method for class 'tvcm'
prune(tree, cp = NULL, alpha = NULL, maxstep = NULL,
    terminal = NULL, original = FALSE, ...)
## S3 method for class 'tvcm'
prunepath(tree, steps = 1L, ...)
## S3 method for class 'tvcm'
cvloss(object, folds = folds_control(), ...)
folds_control(type = c("kfold", "subsampling", "bootstrap"),
    K = ifelse(type == "kfold", 5, 100),
    prob = 0.5, weights = c("case", "freq"),
    seed = NULL)
## S3 method for class 'cvloss.tvcm'
plot(x, legend = TRUE, details = TRUE, ...)
## S3 method for class 'tvcm'
oobloss(object, newdata = NULL, weights = NULL,
        fun = NULL, ...)
```


Arguments

object, tree an object of class tvcm.
$\mathrm{cp} \quad$ numeric scalar. The complexity parameter to be cross-validated resp. the penalty with which the model should be pruned.
alpha numeric significance level. Represents the stopping parameter for tvcm objects grown with sctest = TRUE, see tvcm_control. A node is splitted when the p value for any coefficient stability test in that node falls below alpha.

maxstep	integer. The maximum number of steps of the algorithm.
terminal	a list of integer vectors with the ids of the nodes the inner nodes to be set to terminal nodes. The length of the list must be equal the number of partitions.
original	logical scalar. Whether pruning should be based on the trees from partitioning rather than on the current trees.
steps	integer vector. The iteration steps from which information should be extracted.
folds	a list with control arguments as produced by folds_control.
type	character string. The type of sampling scheme to be used to divide the data of the input model in a learning and a validation set.
K	integer scalar. The number of folds.
weights	for folds_control, a character that defines whether the weights of object are case weights or frequencies of cases; for oobloss, a numeric vector of weights corresponding to the rows of newdata.
prob	numeric between 0 and 1 . The probability for the "subsampling" cross-validation scheme.
seed	an numeric scalar that defines the seed.
x	an object of class cvloss.tvcm as produced by cvloss.
legend	logical scalar. Whether a legend should be added.
details	logical scalar. Whether the foldwise validation errors should be shown.
newdata	a data.frame of out-of-bag data (including the response variable). See also predict.tvcm.
fun	the loss function for the validation sets. By default, the (possibly weighted) mean of the deviance residuals as defined by the family of the fitted object is applied.
	other arguments to be passed.

Details

tvcglm and tvcm processe tree-size selection by default. The functions could be interesting for advanced users.
The prune function is used to collapse inner nodes of the tree structures by the tuning parameter cp . The aim of pruning by cp is to collapse inner nodes to minimize the cost-complexity criterion

$$
\operatorname{error}(c p)=\operatorname{error}(\text { tree })+c p * \text { complexity }(\text { tree })
$$

where the training error error (tree) is defined by lossfun and complexity (tree) is defined as the total number of coefficients times dfpar plus the total number of splits times dfsplit. The function lossfun and the parameters dfpar and dfsplit are defined by the control argument of tvcm, see also tvcm_control. By default, error(tree) is minus two times the total likelihood of the model and complexity(tree) the number of splits. The minimization of error (cp) is implemented by the following iterative backward-stepwise algorithm

1. fit all subtree models that collapse one inner node of the current tree model.
2. compute the per-complexity increase in the training error

$$
d e v=(\text { error }(\text { subtree })-\operatorname{error}(\text { tree })) /(\text { complexity }(\text { tree })-\text { complexity }(\text { subtree }))
$$

for all fitted subtree models
3. if any $\mathrm{dev}<\mathrm{cp}$ then set as the tree model the subtree that minimizes dev and repeated 1 to 3 , otherwise stop.

The penalty cp is generally unknown and is estimated adaptively from the data. The cvloss function implements the cross-validation method to do this. cvloss repeats for each fold the following steps

1. fit a new model with $t v c m$ based on the training data of the fold.
2. prune the new model for increasing cp . Compute for each cp the average validation error.

Doing so yields for each fold a sequence of values for cp and a sequence of average validation errors. These sequences are then combined to a finer grid and the average validation error is averaged correspondingly. From these two sequences we choose the cp value that minimizes the validation error. Notice that the average validation error is computed as the total prediction error of the validation set divided by the sum of validation set weights. See also the argument ooblossfun in tvcm_control and the function oobloss.
The prunepath function can be used to backtrack the pruning algorithm. By default, it shows the results from collapsing inner nodes in the first iteration. The interesting iteration(s) can be selected by the steps argument. The output shows several information on the performances when collapsing inner nodes. The node labels shown in the output refer to the initial tree.

The function folds_control is used to specify the cross-validation scheme, where a random 5fold cross-validation scheme is used by default. Alternatives are type = "subsampling" (random draws without replacement) and type = "bootstrap" (random draws with replacement). For 2stage models (with random-effects) fitted by olmm, the subsets are based on subject-wise i.e. first stage sampling. For models where weights represent frequencies of observation units (e.g., data from contingency tables), the option weights = "freq" should be considered. cvloss returns an object for which a print and a plot generic is provided.
oobloss can be used to estimate the total prediction error for validation data (the newdata argument). By default, the loss is defined as the sum of deviance residuals, see the return value dev. resids of family resp. family. olmm. Otherwise, the loss function can be defined manually by the argument fun, see the examples below. In general the sum of deviance residual is equal the sum of the -2 log-likelihood errors. A special case is the gaussian family, where the deviance residuals are computed as $\sum_{i=1}^{N} w_{i}\left(y_{i}-\mu\right)^{2}$, that is, the deviance residuals ignore the term $\log 2 \pi \sigma^{2}$. Therefore, the sum of deviance residuals for the gaussian model (and possibly others) is not exactly the sum of -2 log-likelihood prediction errors (but shifted by a constant). Another special case are models with random effects. For models based on olmm, the deviance residuals are retrieved from marginal predictions (where random effects are integrated out).

Value

prune returns a tvcm object, folds_control returns a list of parameters for building a crossvalidation scheme. cvloss returns an cvloss.tvcm object with at least the following components:
grid a list with values for cp .
oobloss a matrix recording the validated loss for each value in grid for each fold.
cp .hat numeric scalar. The tuning parameter which minimizes the cross-validated error.
folds the used folds to extract the learning and the validation sets.
oobloss returns a scalar representing the total prediction error for newdata.

Author(s)

Reto Burgin

References

Breiman, L., J. H. Friedman, R. A. Olshen and C.J. Stone (1984). Classification and Regression Trees. New York, USA: Wadsworth.
Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New York, USA: Springer-Verlag.

Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart. Journal of Statistical Software, 80(6), 1-33.

See Also

tvcm

Examples

```
## ---------------------------------------------------------------
## Dummy Example:
##
## Model selection for the 'vcrpart_2' data. The example is
## merely a syntax template.
## ---------------------------------------------------------------
## load the data
data(vcrpart_2)
## fit the model
control <- tvcm_control(maxstep = 2L, minsize = 5L, cv = FALSE)
model <- tvcglm(y ~ vc(z1, z2, by = x1) + vc(z1, by = x2),
    data = vcrpart_2, family = gaussian(),
    control = control, subset = 1:75)
## cross-validate 'dfsplit'
cv <- cvloss(model, folds = folds_control(type = "kfold", K = 2, seed = 1))
cv
plot(cv)
## prune model with estimated 'cp'
model.p <- prune(model, cp = cv$cp.hat)
## backtrack pruning
```

```
prunepath(model.p, steps = 1:3)
## out-of-bag error
oobloss(model, newdata = vcrpart_2[76:100,])
## use an alternative loss function
rfun <- function(y, mu, wt) sum(abs(y - mu))
oobloss(model, newdata = vcrpart_2[76:100,], fun = rfun)
```

tvcm-control Control parameters for tvcm.

Description

Various parameters that control aspects for tvom.

Usage

```
tvcm_control(minsize = 30, mindev = ifelse(sctest, 0.0, 2.0),
    sctest = FALSE, alpha = 0.05, bonferroni = TRUE,
    trim = 0.1, estfun.args = list(), nimpute = 5,
    maxnomsplit = 5, maxordsplit = 9, maxnumsplit = 9,
    maxstep = 1e3, maxwidth = Inf, maxdepth = Inf,
    lossfun = neglogLik2, ooblossfun = NULL, fast = TRUE,
    cp = 0.0, dfpar = 0.0, dfsplit = 1.0,
    cv = !sctest, folds = folds_control("kfold", 5),
    prune = cv, papply = mclapply, papply.args = list(),
    center = fast, seed = NULL, verbose = FALSE, ...)
```


Arguments

alpha, bonferroni, trim, estfun.args, nimpute
See tvcolmm_control
mindev, cv, folds, prune, center
See tvcglm_control
minsize numeric (vector). The minimum sum of weights in terminal nodes.
sctest logical scalar. Defines whether coefficient constancy tests should be used for the variable and node selection in each iteration.
maxnomsplit integer. For nominal partitioning variables with more the maxnomsplit the categories are ordered an treated as ordinal.
maxordsplit integer. The maximum number of splits of ordered partitioning variables to be evaluated.
maxnumsplit integer. The maximum number of splits of numeric partitioning variables to be evaluated.
maxstep integer. The maximum number of iterations i.e. number of splits to be processed.
maxwidth integer (vector). The maximum width of the partition(s).

maxdepth	integer (vector). The maximum depth of the partition(s).
lossfun	a function to extract the training error, typically minus two times the negative log likelihood of the fitted model (see neglogLik2). Is currently ignored if a glm model is fitted and fast = TRUE. a loss function that defines how to compute the validation error during cross- validation. The function will be assigned to the fun argument of oobloss. logical scalar. Whether the approximative model should be used to search for the next split. The approximative search model uses only the observations of the node to split and incorporates the fitted values of the current model as offsets. Therewith the estimation is reduces to the coefficients of the added split. If FALSE, the accurate search model is used.
fast	numeric scalar. The penalty to be multiplied with the complexity of the model during partitioning. The complexity of the model is defined as the number of coefficients times dfpar plus the number of splits times dfsplit. By default, cp = (no penalization during partitioning) and dfpar = 0 and dfsplit = 1 (the complexity is measured as the total number of splits). cp also presents the min- imum evaluated value at cross-validation.
cp	numeric scalar. The degree of freedom per model coefficient. Is used to compute the complexity of the model, see cp.
dfpar	a numeric scalar. The degree of freedom per split. Is used to compute the complexity of the model, see cp.
dfsplit	
(parallel) apply function, defaults to mclapply. The function will parallelize the	

Value

A list of class tvcm_control containing the control parameters for tvcm .

Author(s)

Reto Burgin

See Also

tvcolmm_control, tvcglm_control, tvcm, fvcm

Examples

tvcm_control(minsize = 100)

Description

Standard methods for computing on tvem objects.

Usage

```
## S3 method for class 'tvcm'
coef(object, ...)
## S3 method for class 'tvcm'
depth(x, root = FALSE, ...)
## S3 method for class 'tvcm'
extract(object, what = c(
            "control", "model",
            "nodes", "sctest", "p.value",
            "devgrid", "cv", "selected",
            "coef", "sd", "var"),
        steps = NULL, ...)
## S3 method for class 'tvcm'
neglogLik2(object, ...)
## S3 method for class 'tvcm'
predict(object, newdata = NULL,
            type = c("link", "response", "prob", "class",
            "node", "coef", "ranef"),
            ranef = FALSE, na.action = na.pass, ...)
## S3 method for class 'tvcm'
splitpath(tree, steps = 1L,
            details = FALSE, ...)
## S3 method for class 'tvcm'
summary(object, ...)
## S3 method for class 'tvcm'
width(x, ...)
```


Arguments

object, tree, x an object of class tvcm.
root logical scalar. Should the root count be counted in depth?

```
steps integer vector. The iteration steps from which information should be extracted.
newdata an optional data frame in which to look for variables with which to predict, if
    omitted, the fitted values are used.
type character string. Denotes for predict the type of predicted value. See predict.glm
    or predict.olmm. "response" and "prob" are identical.
na.action function determining what should be done with missing values for fixed effects
    in newdata. The default is to predict NA: see na.pass.
ranef logical scalar or matrix indicating whether prediction should be based on ran-
    dom effects. See predict.olmm.
what a character specifying the quantities to extract.
details logical scalar. Whether detail results like coefficient constancy tests or loss min-
    imizing grid search should be shown.
... Additional arguments passed to the calls.
```


Details

The predict function has two additional options for the type argument. The option "node" calls the node id and "coef" predicts the coefficients corresponding to an observation. In cases of multiple vc terms for the same predictor, the coefficients are summed up.
The splitpath function allows to backtrack the partitioning procedure. By default, it shows which split was chosen in the first iteration. The interesting iteration(s) can be selected by the steps argument. With details = TRUE it is also possible to backtrack the coefficient constancy tests and/or the loss reduction statistics.
summary computes summary statistics of the fitted model, including the estimated coefficients. The varying coefficient are printed by means of a printed decision tree. Notice that in cases there is no split for the varying coefficient, the average coefficient will be among the fixed effects.
Further undocumented, available methods are: fitted, formula, getCall, logLik, model.frame, nobs, print, ranef, resid, and weights. All these methods have the same arguments as the corresponding default methods.

Value

The coef.tvcm and coefficients.tvcm methods return a list with model coefficients. Slot vc stores varying coefficients, fe fixed coefficients and re coefficients on random effects.
The depth.tvcm method returns a integer vector with the depth of the trees of every varying coefficient. width. tvom returns a integer vector with the width of the trees.
The extract and extract. tvom methods allow to extract further information of tvcm objects, such as the underlying regression model. The type of the return value depends on the input for argument what.
The formula.tvcm method extracts the model formula, which is an object of class formula. See also formula.
The methods fitted.tvom and predict.fvom return an object of class numeric or matrix, depending on the used model or the specification of the argument type.
The getCall.tvcm method extracts the call for fitting the model, which is an object of class call. See also call.

The logLik.tvcm method returns an object of class logLik, see also logLik.
The model.frame.tvcm method returns a data.frame. See also model.frame.
The neglogLik2.tvcm method returns a single numeric, see also neglogLik2.
The nobs. tvacm method extracts the number of observations used to fit the model. See also nobs.tvcm.
The print.tvom and summary.tvom methods return NULL.
The ranef.tvcm method returns an object of class matrix with values for the random effects. See also ranef.olmm and ranef.

The resid.tvem and residuals.tvem methods return a numeric or a matrix, depending on the used model or the type of residuals. See the help of the resid method of the used model.

The methods splitpath and splitpath.tvem return an object of class splitpath.tvcm that contains information on splitting when building the tree.

The weights.tvcm method extracts a numeric vector with the model weights. See also weights.

Author(s)

Reto Burgin

See Also

tvcm, tvcm-assessment, tvcm-plot

Examples

```
## --------------------------------------------------------------------------
## Dummy example:
##
## Apply various methods on a 'tvcm' object fitted on the 'vcrpart_2'
## data. Cross-validation is omitted to accelerate the computations.
## -------------------------------------------------------------------------
data(vcrpart_2)
model <- tvcm(y ~ -1 + vc(z1, z2) + vc(z1, z2, by = x1) + x2,
    data = vcrpart_2, family = gaussian(), subset = 1:90,
    control = tvcm_control(cv = FALSE))
coef(model)
extract(model, "selected")
extract(model, "model")
predict(model, newdata = vcrpart_2[91:100,], type = "node")
predict(model, newdata = vcrpart_2[91:100,], type = "response")
splitpath(model, steps = 1)
summary(model, digits = 2)
```


Description

plot method and panel functions for tvcm objects.

Usage

\#\# S3 method for class 'tvcm'
plot(x, type = c("default", "coef",
"simple", "partdep", "cv"),
main, part $=$ NULL, drop_terminal = TRUE, tnex, newpage $=$ TRUE, ask $=$ NULL, pop $=$ TRUE, gp $=$ gpar(), ...)
panel_partdep(object, parm = NULL, var $=$ NULL, ask $=$ NULL, prob $=$ NULL, neval $=50$, add $=$ FALSE, etalab = c("int", "char", "eta"), ...)
panel_coef(object, parm = NULL, id = TRUE, nobs = TRUE, $\exp =$ FALSE, plot_gp = list(), margins, yadj = 0.1, mean $=$ FALSE, mean_gp = list(), conf.int = FALSE, conf.int_gp = list(), abbreviate $=$ TRUE, etalab = c("int", "char", "eta"), ...)

Arguments

x, object type	An object of class tvcm. the type of the plot. Available types are "default", "simple", "coef", "partdep" and "cv". character. A main title for the plot.
main	a logical indicating whether all terminal nodes should be plotted at the bottom. drop_terminal See also plot. party.
tnex	a numeric value giving the terminal node extension in relation to the inner nodes. By default the value is computed adaptively to the tree size.
newpage	a logical indicating whether grid. newpage() should be called.
pop	a logical whether the viewport tree should be popped before return.
gp	graphical parameters. See gpar. integer or letter. The partition i.e. varying coefficient component to be plotted.

parm	character vector (panel_partdep and panel_coef) or list of character vectors (panel_coef) with names of model coefficients corresponding to the chosen component. Indicates which coefficients should be visualized. If parm is a list, a separate panel is allocated for each list component.
var	character vector. Indicates the partitioning variables to be visualized.
ask	logical. Whether an input should be asked before printing the next panel.
prob	a probability between 0 and 1 . Gives the size of the random subsample over which the coefficients are averaged. May be smaller than 1 if the sample is large.
neval	the maximal number of distinct values of the variable to be evaluated.
add	logical. Whether the panel is to be added into an active plot.
id	logical. Whether the node id should be displayed.
nobs	logical. Whether the number of observations in each node should be displayed.
exp	logical. Whether the labels in the y-axes should be the exponential of coefficients.
plot_gp	a list of graphical parameters for the panels. Includes components xlim, ylim, pch, ylab, type (the type of symbols, e.g. "b"), label (characters for ticks at the x axis), height, width, gp (a list produced by gpar). If parm is a list, plot_gp may be a nested list specifying the graphical parameters for each list component of parm. See examples.
margins	a numeric vector c (bottom, left, top, right) specifying the space on the margins for each panel. By default the values are computed adaptively to the tree size.
yadj	a numeric scalar larger than zero that increases the margin above the panel. May be useful if the edge labels are covered by the coefficient panels.
mean	logical. Whether the average coefficients over the population should be visualized.
mean_gp	list with graphical parameters for plotting the mean coefficients. Includes a component gp = gpar (. . .) and a component pch. See examples.
conf.int	logical. Whether confidence intervals should be visualized. These are indicative values only. They do not account for the uncertainty of model selection procedure.
conf.int_gp	a list of graphical parameters for the confidence intervals applied to arrow. Includes angle, length, ends and type. See examples.
abbreviate	logical scalar. Whether labels of coefficients should be abbreviated.
etalab	character. Whether category-specific effects should be labeled by integers of categories (default), the labels of the categories ("char") or the index of the predictor ("eta").
	additional arguments passed to panel_partdep or panel_coef or other methods.

Details

The plot functions allow the diagnosis of fitted tvcm objects. type = "default", type ="coef" and type = "simple" show the tree structure and coefficients in each node. type = "partdep" plots partial dependency plots, see Hastie et al. (2001), section 10.13.2. Finally, type $=$ "cv" shows, if available, the results from cross-validation.
The functions panel_partdep and panel_coef are exported to show the additional arguments that can be passed to ... of a plot call.
Notice that user-defined plots can be generated by the use of the plot. party function, see partykit.

Value

The plot.fvem method returns NULL.

Author(s)

Reto Burgin

References

Hastie, T., R. Tibshirani and J. Friedman (2001). The Elements of Statistical Learning (2 ed.). New York, USA: Springer-Verlag.

See Also

tvcm, tvcm-methods

Examples

```
## ---------------------------------------------------------------------
## Dummy example:
##
## Plotting the types "coef" and "partdep" for a 'tvcm' object fitted
## on the artificial data 'vcrpart_2'.
## -----------------------------------------------------------------------
data(vcrpart_2)
## fit the model
model <- tvcglm(y ~ vc(z1, z2, by = x1, intercept = TRUE) + x2,
    data = vcrpart_2, family = gaussian(),
    control = tvcm_control(maxwidth = 3, minbucket = 5L))
## plot type "coef"
plot(model, "coef")
## add various (stupid) plot parameters
plot(model, "coef",
    plot_gp = list(type = "p", pch = 2, ylim = c(-4, 4),
        label = c("par1", "par2"), gp = gpar(col = "blue")),
    conf.int_gp = list(angle = 45, length = unit(2, "mm"),
```

```
    ends = "last", type = "closed"),
    mean_gp = list(pch = 16,
        gp = gpar(fontsize = 16, cex = 2, col = "red")))
## separate plots with separate plot parameters
plot(model, "coef", parm = list("(Intercept)", "x1"), tnex = 2,
    plot_gp = list(list(gp = gpar(col = "red")),
            list(gp = gpar(col = "blue"))),
    mean_gp = list(list(gp = gpar(col = "green")),
            list(gp = gpar(col = "yellow"))))
## plot type "partdep"
par(mfrow = c(1, 2))
plot(model, "partdep", var = "z1", ask = FALSE)
```

tvcolmm Tree-based varying coefficient regression based on ordinal and nominal two-stage linear mixed models.

Description

The tvcolmm function implements the tree-based longitudinal varying coefficient regression algorithm proposed in Burgin and Ritschard (2015). The algorithm approximates varying fixed coefficients in the cumulative logit mixed model by a (multivariate) piecewise constant function using recursive partitioning, i.e., it estimates the fixed effect component of the model separately for strata of the value space of partitioning variables.

Usage

```
tvcolmm(formula, data, family = cumulative(),
    weights, subset, offset, na.action = na.omit,
    control = tvcolmm_control(), ...)
    tvcolmm_control(sctest = TRUE, alpha = 0.05, bonferroni = TRUE,
        minsize = 50, maxnomsplit = 5, maxordsplit = 9,
        maxnumsplit = 9, fast = TRUE,
        trim = 0.1, estfun.args = list(), nimpute = 5,
        seed = NULL, maxstep = 1e3, verbose = FALSE, ...)
```


Arguments

formula a symbolic description of the model to fit, e.g.,
$y \sim-1+v c(z 1, \ldots, z L, b y=x 1+\ldots+x P$, intercept $=$ TRUE $)+r e(1 \mid i d)$
where vc term specifies the varying fixed coefficients. Only one such vc term is allowed with tvcolmm (in contrast to tvcglm where multiple vc terms can be specified). The above example formula removes the global intercepts and adds locally varying intercepts, by adding a -1 term and specfiying intercept $=$ TRUE in the vc term. If varying intercepts are desired, we recommend to always

	remove the global intercepts. For more details on the formula specification, see olmm and vcrpart-formula.
family	the model family. An object of class family .olmm.
data	a data frame containing the variables in the model.
weights	an optional numeric vector of weights to be used in the fitting process.
subset	an optional logical or integer vector specifying a subset of 'data' to be used in the fitting process.
offset	this can be used to specify an a priori known component to be included in the linear predictor during fitting.
na.action	a function that indicates what should happen if data contain NAs. The default na. action $=$ na.omit is listwise deletion, i.e., observations with missings on any variable are dropped. See na. action.
control	a list with control parameters as returned by tvcolmm_control, or by tvcm_control for advanced users.
sctest	logical scalar. Defines whether coefficient constancy tests should be used for the variable and node selection in each iteration.
alpha	numeric significance threshold between 0 and 1. A node is splitted when the smallest (possibly Bonferroni-corrected) p value for any coefficient constancy test in the current step falls below alpha.
bonferroni	logical. Indicates if and how p-values of coefficient constancy tests must be Bonferroni corrected. See details.
minsize maxnomspli	numeric scalar. The minimum sum of weights in terminal nodes. xordsplit, maxnumsplit
	integer scalars for split candidate reduction. See tvcm_control.
fast	logical scalar. Whether the approximative model should be used to search for the next split. See tvcm_control.
trim	numeric between 0 and 1 . Specifies the trimming parameter in coefficient constancy tests for continuous partitioning variables. See also the argument from of function supLM in package strucchange.
estfun.args	list of arguments to be passed to olmm_gefp. See details.
nimpute	a positive integer scalar. The number of times coefficient constancy tests should be repeated in each iteration. See details.
seed	an integer specifying which seed should be set at the beginning.
maxstep	integer. The maximum number of iterations i.e. number of splits to be processed.
verbose	logical. Should information about the fitting process be printed to the screen?
	additional arguments passed to the fitting function fit or to tvcm_control.

Details

The tvcolmm function iterates the following steps:

1. Fit the current mixed model
y ~Node: x1 + . . . + Node: xP + re(1 + w1 + . . |id)
with olmm, where Node is a categorical variable with terminal node labels $1, \ldots, \mathrm{M}$.
2. Test the constancy of the fixed effects Node: x1, .., separately for each moderator $z 1, \ldots$, zL in each node $1, \ldots, \mathrm{M}$. This yields L times M (possibly Bonferroni corrected) p-values for rejecting coefficient constancy.
3. If the minimum p-value is smaller than alpha, then select the node and the variable corresponding to the minimum p-value. Search and incorporate the optimal among the candidate splits in the selected node and variable by exhaustive likelihood search.
4. Else if minimum p-value is larger than alpha, stop the algorithm and return the current model.

The implemented coefficient constancy tests used for node and variable selection (step 2) are based on the M-fluctuation tests of Zeileis and Hornik (2007), using the observation scores of the fitted mixed model. The observation scores can be extracted by olmm_estfun for models fitted with olmm. To deal with intra-individual correlations between such observation scores, the olmm_estfun function decorrelates the observation scores. In cases of unbalanced data, the pre-decorrelation method requires imputation. nimpute gives the number of times the coefficient constancy tests are repeated in each iteration. The final p-values are then the averages of the repetations.
The algorithm combines the splitting technique of Zeileis (2008) with the technique of Hajjem et. al (2011) and Sela and Simonoff (2012) to incorporate regression trees into mixed models.
For the exhaustive search, the algorithm implements a number of split point reduction methods to decrease the computational complexity. See the arguments maxnomsplit, maxordsplit and maxnumsplit. By default, the algorithm also uses the approximative search model approach proposed in Burgin and Ritschard (2017). To disable this option to use the original algorithm, set fast = FALSE in tvcolmm_control.
Special attention is given to varying intercepts, i.e. the terms that account for the direct effects of the moderators. A common specification is
$y \sim-1+v c(z 1, \ldots, z L$, by $=x 1+\ldots+x P$, intercept $=$ TRUE $)+r e(1+w 1+\ldots \mid i d)$
Doing so replaces the globale intercept by local intercepts. As mentioned, if a varying intercepts are desired, we recommend to always remove the global intercept.

Value

An object of class tvcm

Author(s)

Reto Burgin

References

Zeileis, A., T. Hothorn, and K. Hornik (2008). Model-Based Recursive Partitioning. Journal of Computational and Graphical Statistics, 17(2), 492-514.
Zeileis A., Hornik K. (2007), Generalized M-Fluctuation Tests for Parameter Instability, Statistica Neerlandica, 61(4), 488-508.
Burgin R. and Ritschard G. (2015), Tree-Based Varying Coefficient Regression for Longitudinal Ordinal Responses. Computational Statistics \& Data Analysis, 86, 65-80.
Burgin, R. and G. Ritschard (2017), Coefficient-Wise Tree-Based Varying Coefficient Regression with vcrpart. Journal of Statistical Software, 80(6), 1-33.

Sela R. and J. S. Simonoff (2012). RE-EM trees: A Data Mining Approach for Longitudinal and Clustered data, Machine Learning 86(2), 169-207.
A. Hajjem, F. Bellavance and D. Larocque (2011), Mixed Effects Regression Trees for Clustered Data, Statistics \& Probability Letters 81(4), 451-459.

See Also

tvcm_control, tvcm-methods, tvcm-plot, fvcolmm, olmm

Examples

```
## --------------------------------------------------------------------------
## Example: Moderated effect effect of unemployment
##
## Here we fit a varying coefficient ordinal linear mixed on the
## synthetic ordinal longitudinal data 'unemp'. The interest is whether
## the effect of unemployment 'UNEMP' on happiness 'GHQL' is moderated
## by 'AGE', 'FISIT', 'GENDER' and 'UEREGION'. 'FISIT' is the only true
## moderator. For the the partitioning we coefficient constancy tests,
## as described in Burgin and Ritschard (2015)
## ------------------------------------------------------------------------
data(unemp)
## fit the model
model.UE <-
    tvcolmm(GHQL ~ -1 +
                vc(AGE, FISIT, GENDER, UEREGION, by = UNEMP, intercept = TRUE) +
                re(1|PID), data = unemp)
## diagnosis
plot(model.UE, "coef")
summary(model.UE)
splitpath(model.UE, steps = 1, details = TRUE)
```

 vcrpart-demo Synthetic data sets

Description

Synthetic data for illustrations.

Usage

data(vcrpart_1)
data(vcrpart_2)
data(vcrpart_3)
data(unemp)

Format

y ordered factor. The response variable
id, PID factor. The subject identification vector.
wave numeric. The wave identification vector.
treat a dummy variable. The treatment effect.
$\mathrm{x} 1, \mathrm{x} 2$ numeric predictor variables.
z1, z2, z3, z2 moderator (partitioning) variables.
GHQL self rated general happiness.
YEAR survey year.
UNEMP unemployed or not.
AGE age.
FISIT self-reported financial situation.
GENDER gender.
UEREGION regional unemployment.

See Also

olmm, otsplot, tvcm

Examples

```
## -----------------------------------------------------------
## generating 'vcrpart_1'
## --------------------------------------------------------------
## create skeletton
set.seed(1)
vcrpart_1 <- data.frame(id = factor(rep(1:50, each = 4)),
                        wave = rep(1:4, 50),
                        treat = sample(0:1, 200, TRUE))
## add partitioning variables
vcrpart_1$z1 <- rnorm(50)[vcrpart_1$id]
vcrpart_1$z2 <- rnorm(200)
vcrpart_1$z3 <- factor(sample(1:2, 50, TRUE)[vcrpart_1$id])
vcrpart_1$z4 <- factor(sample(1:2, 200, TRUE))
## simulate response
eta <- 2 * vcrpart_1$treat * (vcrpart_1$z4 == "1")
eta <- eta + rnorm(50)[vcrpart_1$id] + rlogis(200)
vcrpart_1$y <- cut(-eta, c(-Inf, -1, 1, Inf), 1:3,
    ordered_result = TRUE)
## ---------------------------------------------------------------
## generating 'vcrpart_2'
## ------------------------------------------------------------
```

```
set.seed(1)
vcrpart_2 <- data.frame(x1 = rnorm(100),
    x2 = rnorm(100),
    z1 = factor(sample(1:3, 100, TRUE)),
    z2 = factor(sample(1:3, 100, TRUE)))
vcrpart_2$y <- vcrpart_2$x1 * (vcrpart_2$z1 == "2") +
    2 * vcrpart_2$x1 * (vcrpart_2$z1 == "3")
vcrpart_2$y <- vcrpart_2$y + rnorm(100)
## ----------------------------------------------------------------
## generating 'vcrpart_3'
## ----------------------------------------------------------------
set.seed(1)
vcrpart_3 <- data.frame(x1 = rnorm(100),
            z1 = runif(100, -pi/2, pi/2))
vcrpart_3$y <- vcrpart_3$x1 * sin(vcrpart_3$z1) + rnorm(100)
## -----------------------------------------------------------------------
## generating 'unemp'
## --------------------------------------------------------------------
## create skeletton
set.seed(1)
unemp <- data.frame(PID = factor(rep(1:50, each = 4)),
                UNEMP = rep(c(0, 0, 1, 1), 50),
                YEAR = rep(2001:2004, 50))
## add partitioning variables
unemp$AGE <- runif(50, 25, 60)[unemp$PID] + unemp$YEAR - 2000
unemp$FISIT <- ordered(sample(1:5, 200, replace = TRUE))
unemp$GENDER <- factor(sample(c("female", "male"), 50, replace = TRUE)[unemp$PID])
unemp$UEREGION <- runif(50, 0.02, 0.1)[unemp$PID]
## simulate response
eta <- 2 * unemp$UNEMP * (unemp$FISIT == "1" | unemp$FISIT == "2")
eta <- eta + rnorm(50)[unemp$PID] + rlogis(200)
unemp$GHQL <- cut(-eta, c(-Inf, -1, 0, 1, Inf), 1:4,
    ordered_result = TRUE)
```

vcrpart-formula Special terms for formulas.

Description

Special terms for formulas assigned to $t v c m, f v c m$ and olmm.

Usage

```
fe(formula, intercept = TRUE)
re(formula, intercept = TRUE)
vc(..., by, intercept = missing(by), nuisance = character())
ce(formula)
ge(formula)
```


Arguments

formula	a symbolic description for the corresponding component of the formula compo- nent. See examples. logical or character vector. intercept = TRUE (default) indicates that an inter- cept is incorporated. intercept = FALSE removes the random intercept from the formula. Note that the sometimes allowed - term is ignored. The character strings "ce" (category-specific random intercepts) and "ge" (category-global random intercepts) may be used in connection with olmm. Intercepts have spe- cific interpretations for fe, re and vc, see the details.
the names of variables that moderate (i.e. modify) the effects of the variables	
specified in by, separated by commas. It is also possibly to assign a vector that	
contains the variable names as characters. Note that operators like factor (x)	
are not allowed.	
a formula of predictors the effects of which are moderated by the variables in	

Details

Special formula terms to define fixed effects fe, varying coefficients vc and random effects re. The use of these formula terms ensures that the functions fvcm, tvcm and olmm fit the intended model. Some examples are given below and on the documentation pages of the fitting functions.
For all of $f v \mathrm{~cm}, \mathrm{tvcm}$ and olmm, variables which are not defined with one of fe, vc and re are treated as fixed effects. Intercepts can be dropped from the model by the intercept argument. The terms ce (category-specific effects) and ge (global effect or proportional odds effect) are designed for the function olmm. Notice that tvcm may changes, for internal reasons, the order of the terms in the specified formula. Note that you can put multiple terms within fe, ge and ce terms (e.g., fe(ce(x1 $+x 2+\operatorname{ge}(x 3+x 4))$).
At present, the term ".", which is often use to extract all variables of the data, is ignored. As an alternative, vc interprets character vectors, assigned as unnamed arguments, as lists of variables of moderators to be extracted from data. See the examples below.

Default for intercepts in fe terms is intercept = TRUE, or intercept = "ce" for models fitted with olmm. This means that an intercept is automatically attached. Alternatives are intercept = FALSE, which is equal to intercept = "none", and intercept = "ge", which yields a global-effect intercept for models fitted with olmm.

Default for intercepts in vc is to introduce an intercept if the by argument is ignored, otherwise no intercept is introduced. Specifically, if input is specified for the by argument, then intercept = TRUE, or intercept = "ce" for models fitted by olmm. Alternatives are intercept = FALSE, which is equal to intercept = "none", and intercept = "ge", which yields a global-effect varying intercept.
Default for intercepts in re is intercept = TRUE, which is equal to intercept = "ge". intercept $=$ FALSE is equal to intercept $=$ "none". For category-specific random intercepts, use intercept = "ge". See olmm.

Value

a list used by $\mathrm{tvcm}, \mathrm{fvcm}$ and olmm for constructing the model matrices.

Author(s)

Reto Burgin

See Also

tvcm, fvcm, olmm

Examples

```
## Formula for a model with 2 fixed effects (x1 and x2) and a random
## intercept. The 're' terms indicates that an intercept is fitted for
## each level of 'id'.
formula <- y ~ fe(x1 + x2) + re(1|id)
## Formula for a model with one fixed effect and one varying coefficient
## term with 2 moderators and 2 varying coefficient predictors. 'tvcm'
## will fit one partition to model the effects of 'x2' and 'x3' as
## functions of 'z1' and 'z2'.
formula <- y ~ x1 + vc(z1, z2, by = x2 + x3, intercept = TRUE)
## Similar formula as above, but the predictors 'x2' and 'x3' have
## separate 'vc' terms. 'tvcm' will fit a separate partition for each of
## 'x2' and 'x3' to model their effects as functions of 'z1' and 'z2'.
formula <- y ~ x1 + vc(z1, z2, by = x2) + vc(z1, z2, by = x3)
## As an alternative to '.' you can define variables in a vector
vars <- c("x1", "x2", "x3")
formula <- y ~ x1 + vc(vars, by = x2) + vc(vars, by = x3)
```


Index

```
* datasets
    movie,9
    PL, 28
    poverty, }2
    schizo, 31
    vcrpart-demo,53
* hplot
    fvcm-methods,5
    otsplot,25
    tvcm-plot,47
* methods
    fvcm-methods, 5
    olmm-gefp, 15
    olmm-methods, 17
    olmm-predict,21
    olmm-summary, 24
    tvcm-methods,44
* models
    fvcm, }
    olmm, }
* tree
    tvcglm, 32
    tvcm,35
    tvcolmm, 50
* validation
    tvcm-assessment, 38
adjacent, 10, 11
adjacent (olmm), }
anova, 19
anova.olmm, 19
anova.olmm (olmm-methods), 17
arrow, 48
baseline, 10, 11
baseline (olmm), }
binomial,4
call, 19, 45
ce, 10, 11, 56
```

fitted.tvcm (tvcm-methods), 44
fixef, 18,19
fixef (olmm-methods), 17
fixef.glm, 19
fixef.olmm, 19
folds_control, 4, 33, 39, 40
folds_control (tvcm-assessment), 38
formula, 19, 45
formula.olmm, 19
formula.olmm (olmm-methods), 17
formula.tvcm, 45
formula.tvcm (tvcm-methods), 44
fvcglm, 4, 34
fvcglm (fvcm), 3
fvcglm_control, 4
fvcglm_control (fvcm), 3
fvcm, 3, 4-7, 43, 55-57
fvem-methods, 5
fvcm_control, 4
fvcm_control (fvcm), 3
fvcolmm, 4, 53
fvcolmm (fvcm), 3
fvcolmm_control, 4
fvcolmm_control (fvcm), 3
ge, 10, 11, 56
ge (vcrpart-formula), 55
getCall, 19, 45
getCall.olmm, 19
getCall.olmm (olmm-methods), 17
getCall.tvcm, 45
getCall.tvcm (tvcm-methods), 44
glm, 5, 33-35
gpar, 47, 48
list, 45
1m, 10
logLik, 19, 45, 46
logLik.olmm, 19
logLik.olmm (olmm-methods), 17
logLik.tvcm, 46
logLik.tvcm (tvcm-methods), 44
matrix, 16
mclapply, 43
model. frame, 19, 45, 46
model.frame.olmm, 19
model. frame.olmm (olmm-methods), 17
model.frame.tvcm, 46
model.frame.tvcm (tvcm-methods), 44
model.matrix, 14,19
model.matrix.olmm, 19
model.matrix.olmm (olmm-methods), 17
movie, 9
na. action, 33, 35, 51
na.pass, $6,22,45$
neglogLik2, 19, 43, 46
neglogLik2 (olmm-methods), 17
neglogLik2.olmm, 19
neglogLik2.tvcm, 46
neglogLik2.tvcm (tvcm-methods), 44
nlminb, 14
nobs, 19, 45
nobs.tvcm, 46
nobs.tvcm (tvcm-methods), 44
olmm, 5, 9, 11, 13-18, 20-25, 35, 40, 51-57
olmm-control, 13
olmm-gefp, 15
olmm-methods, 17
olmm-predict, 21
olmm-summary, 24
olmm_control, 10-14
olmm_control (olmm-control), 13
olmm_estfun, 16, 52
olmm_estfun (olmm-gefp), 15
olmm_gefp, 16, 20, 51
olmm_gefp (olmm-gefp), 15
oobloss, 7, 39-41, 43
oobloss (tvcm-assessment), 38
oobloss.fvcm, 6, 7
oobloss.fvcm (fvcm-methods), 5
oobloss.tvcm, 6
optim, 14
ordered, 13
otsplot, 25, 27, 54
otsplot_control, 27
otsplot_control (otsplot), 25
otsplot_filter, 26, 27
otsplot_filter (otsplot), 25
panel_coef, 48, 49
panel_coef (tvcm-plot), 47
panel_partdep, 48, 49
panel_partdep (tvcm-plot), 47
par, 26
party, 36

```
partynode, 36
PL,28
plot,49
plot.cvloss.tvcm(tvcm-assessment),38
plot.fvcm, 7,49
plot.fvcm(fvcm-methods), 5
plot.party, 47,49
plot.tvcm,6
plot.tvcm(tvcm-plot),47
poverty, 29
predecor_control, 15, 16
predecor_control (olmm-gefp), 15
predict,45
predict.fvcm, 7,45
predict.fvcm(fvcm-methods),5
predict.glm,45
predict.olmm, 6, 19, 20,45
predict.olmm (olmm-predict), 21
predict.tvcm, 6, 39
predict.tvcm(tvcm-methods), 44
print, 6,45
print.fvcm(fvcm-methods),5
print.olmm(olmm-summary), 24
print.summary.olmm (olmm-summary), 24
print.tvcm,46
print.tvcm(tvcm-methods),44
print.VarCorr.olmm, 20
print.VarCorr.olmm (olmm-methods), 17
prune, 39,40
prune (tvcm-assessment), 38
prunepath,40
prunepath (tvcm-assessment), 38
ranef, 6, 7, 19, 20, 22, 45, 46
ranef (olmm-methods), 17
ranef.fvcm, 7
ranef.fvcm(fvcm-methods),5
ranef.olmm, 7, 20, 22, 46
ranef.tvcm,46
ranef.tvcm(tvcm-methods), 44
ranefCov, 19, 20
ranefCov (olmm-methods), 17
ranefCov.olmm, 20
re, 10, 56, 57
re(vcrpart-formula), 55
resid, 19, 45,46
resid.olmm,20
resid.olmm (olmm-methods), 17
resid.tvcm,46
```

partynode, 36
PL, 28
plot, 49
plot.cvloss.tvcm (tvcm-assessment), 38
plot.fvcm, 7, 49
plot.fvcm(fvcm-methods), 5
plot.party, 47, 49
plot.tvcm, 6
plot.tvem (tvcm-plot), 47
poverty, 29
predecor_control, 15, 16
predecor_control (olmm-gefp), 15
predict, 45
predict.fvcm, 7, 45
predict.fvcm (fvcm-methods), 5
predict.glm, 45
dict.olmm, 6, 19, 20, 45
predict.tvcm, 6, 39
predict.tvcm (tvcm-methods), 44
print, 6, 45
print.fvcm (fvcm-methods), 5
print.olmm (olmm-summary), 24
print.summary.olmm (olmm-summary), 24
print.tvcm, 46
print.tvcm (tvcm-methods), 44
print.VarCorr.olmm, 20
print.VarCorr.olmm (olmm-methods), 17
prune, 39, 40
prunepath, 40
prunepath (tvcm-assessment), 38
ranef, 6, 7, 19, 20, 22, 45, 46
ranef (olmm-methods), 17
ranef.fvcm, 7
methods), 5
20, 22, 46
ranef.tvcm, 46
ranef.tvcm (tvcm-methods), 44
ranefCov, 19, 20
ranefCov (olmm-methods), 17
ranefCov.olmm, 20
re, 10, 56, 57
re (vcrpart-formula), 55
resid, 19, 45, 46
resid.olmm, 20
resid.tvcm, 46
resid.tvcm (tvcm-methods), 44
residuals.olmm, 20
residuals.olmm (olmm-methods), 17
residuals.tvcm, 46
residuals.tvcm (tvcm-methods), 44
schizo, 31
simulate, 19
simulate.olmm, 20
simulate.olmm (olmm-methods), 17
splitpath, 45, 46
splitpath (tvcm-methods), 44
splitpath.tvcm, 46
summary, 45
summary.olmm (olmm-summary), 24
summary.tvcm, 46
summary.tvcm (tvcm-methods), 44
terms, 11,20
terms.olmm, 20
terms.olmm (olmm-methods), 17
tvcglm, 4, 32, 32, 33, 35-37, 39, 50
tvcglm_control, 33, 42, 43
tvcglm_control (tvcglm), 32
tvcm, 3-5, 16, 34, 35, 35, 36, 38-44, 46, 47, 49, 52, 54-57
tvcm-assessment, 38
tvcm-control, 42
tvcm-methods, 44
tvcm-plot, 47
tvcm_control, 4, 33, 34, 36-40, 51, 53
tvcm_control (tvcm-control), 42
tvcolmm, 4, 35-37, 50, 50, 51
tvcolmm_control, 42, 43, 51, 52
tvcolmm_control (tvcolmm), 50
ucminf, 14
unemp (vcrpart-demo), 53
update, 19,20
update.olmm, 20
update.olmm (olmm-methods), 17

VarCorr, 19, 20
VarCorr (olmm-methods), 17
VarCorr.olmm, 20
vc, 36, 45, 56, 57
vc (vcrpart-formula), 55
vcov, 19, 20
vcov.olmm, 20
vcov.olmm (olmm-methods), 17
vcrpart-demo, 53
vcrpart-formula, 55
vcrpart_1 (vcrpart-demo), 53
vcrpart_2 (vcrpart-demo), 53
vcrpart_3 (vcrpart-demo), 53
weights, 20, 45, 46
weights.olmm, 20
weights.olmm (olmm-methods), 17
weights.tvcm, 46
weights.tvcm (tvcm-methods), 44
width.tvcm, 45
width.tvcm (tvcm-methods), 44

