As of version 0.3, the package RecordLinkage includes extensions to overcome the problem of high memory consumption that arises when processing a large number of records (i.e. building record pairs out of ≥1000 records without blocking). In versions 0.3_x, this was achieved by blockwise on-demand creation of comparison patterns in an embedded SQLite database (through package RSQLite). Package version 0.4 replaces this mechanism by using file-based data structures from package ff. This approach restricts the amount of data pairs to the available disk space but speeds up execution and facilitates the implementation of methods that need to process the whole set of record pairs (e.g. calculation of optimal classification thresholds).

The interface to the big data methods has is compatible to code written for version 0.3_x, so users familiar with these can stick to their existing workflow (unless access to internal structures like object slots is involved). Therefore, the following text sticks to the vignette already included in versions before 0.4 and only technical details are changed to reflect the different implementation.

In order to facilitate a tidier design, S4 classes and methods were used to implement the extensions. In favor of backward compatibility and development time, plans of a complete transition to S4 were dismissed. Nevertheless, the existing functions were joined with their new counterparts, resulting in methods which dispatch on the new S4 as well as on the existing S3 classes. This approach combines two advantages: First, existing code using the package still works, second, the new classes and methods offer (nearly) the same interface, i.e. the necessary function calls for a linkage task differ only slightly. An exception is getPairs, whose arguments differ from the existing version (see man page).

Defining data and comparison parameters

The existing S3 class "RecLinkData" is supplemented by the S4 classes "RLBigDataLinkage" and "RLBigDataDedup" for linking two datasets and deduplication of one dataset respectively. Both share the common abstract superclass "RLBigData".

library(RecordLinkage)
showClass("RLBigData")
## Virtual Class "RLBigData" [package "RecordLinkage"]
## 
## Slots:
##                                                       
## Name:  frequencies    blockFld  excludeFld   strcmpFld
## Class:     numeric        list     numeric     numeric
##                                                       
## Name:    strcmpFun phoneticFld phoneticFun       pairs
## Class:   character     numeric   character        ffdf
##                                                       
## Name:        Wdata    WdataInd           M           U
## Class:   ff_vector   ff_vector   ff_vector   ff_vector
## 
## Known Subclasses: "RLBigDataDedup", "RLBigDataLinkage"
showClass("RLBigDataDedup")
## Class "RLBigDataDedup" [package "RecordLinkage"]
## 
## Slots:
##                                                       
## Name:         data    identity frequencies    blockFld
## Class:  data.frame      factor     numeric        list
##                                                       
## Name:   excludeFld   strcmpFld   strcmpFun phoneticFld
## Class:     numeric     numeric   character     numeric
##                                                       
## Name:  phoneticFun       pairs       Wdata    WdataInd
## Class:   character        ffdf   ff_vector   ff_vector
##                               
## Name:            M           U
## Class:   ff_vector   ff_vector
## 
## Extends: "RLBigData"
showClass("RLBigDataLinkage")
## Class "RLBigDataLinkage" [package "RecordLinkage"]
## 
## Slots:
##                                                       
## Name:        data1       data2   identity1   identity2
## Class:  data.frame  data.frame      factor      factor
##                                                       
## Name:  frequencies    blockFld  excludeFld   strcmpFld
## Class:     numeric        list     numeric     numeric
##                                                       
## Name:    strcmpFun phoneticFld phoneticFun       pairs
## Class:   character     numeric   character        ffdf
##                                                       
## Name:        Wdata    WdataInd           M           U
## Class:   ff_vector   ff_vector   ff_vector   ff_vector
## 
## Extends: "RLBigData"

For the two non-virtual classes, the constructor-like function RLBigDataDedup and RLBigDataLinkage exist, which correspond to compare.dedup and compare.linkage for the S3 classes and share most of their arguments.

The following example shows the basic usage of the constructors, for details consult their documentation.

# deduplicate with two blocking iterations and string comparison
data(RLdata500)
data(RLdata10000)
rpairs1 <- RLBigDataDedup(RLdata500, 
                          identity = identity.RLdata500, 
                          blockfld = list(1, 3), strcmp = 1:4)

# link two datasets with phonetic code
s1 <- 471:500
s2 <- sample(1:10000, 300)
identity2 <- c(identity.RLdata500[s1], rep(NaN, length(s2)))
dataset <- rbind(RLdata500[s1, ], RLdata10000[s2, ])
rpairs2 <- RLBigDataLinkage(RLdata500, dataset, 
                            identity1 = identity.RLdata500,
                            identity2 = identity2, phonetic = 1:4, 
                            exclude = "lname_c2")

Supervised classification

The existing function classifySupv was transformed to a S4 method which handles the old S3 object ("RecLinkData") as well as the new classes. However, at the moment a classificator can only be trained with an object of class "RecLinkData".

train <- getMinimalTrain(compare.dedup(RLdata500, 
                                       identity = identity.RLdata500,
                                       blockfld = list(1, 3)))
rpairs1 <- RLBigDataDedup(RLdata500, 
                          identity = identity.RLdata500)
classif <- trainSupv(train, "rpart", minsplit = 2)
result <- classifySupv(classif, rpairs1)

The result is an object of class "RLResult" which contains the classification result along with the data object.

showClass("RLResult")
## Class "RLResult" [package "RecordLinkage"]
## 
## Slots:
##                             
## Name:        data prediction
## Class:  RLBigData  ff_vector
summary(result)
## RLResult object
## 
## RLBigDataDedup, Deduplication object
## 
## Number of records: 500 
## Attributes: fname_c1, fname_c2, lname_c1, lname_c2, by, bm, bd 
## Blocking definition:  
## Number of record pairs: 124750 
## Number of matches: 50 
## Number of non-matches: 124700 
## Weight histogram:
## [-1,0] 
## 124750 
## 
## Number of detected links: 55 
## Number of detected possible links: 0 
## Number of detected non-links: 124695

Various error measures are calculated by getErrorMeasures.

getErrorMeasures(result)
## $alpha
## [1] 0.02
## 
## $beta
## [1] 4.811548e-05
## 
## $accuracy
## [1] 0.9999439
## 
## $precision
## [1] 0.8909091
## 
## $sensitivity
## [1] 0.98
## 
## $specificity
## [1] 0.9999519
## 
## $ppv
## [1] 0.8909091
## 
## $npv
## [1] 0.999992

Weight-based classification

As with "RecLinkData" objects, weight-based classification with "RLBigData*" classes includes weight calculation and classification based on one or two thresholds, dividing links, non-links and, if desired, possible links. The following example applies classification with Epilink (see documentation of epiWeights for details):

rpairs1 <- epiWeights(rpairs1)
result <- epiClassify(rpairs1, 0.5)
getTable(result)
## < table of extent 0 x 0 >

Evaluation and results

In addition to getTable and getErrorMeasures, getPairs, which was redesigned as a versatile S4 method, is an important tool to inspect data and linkage results. For example, the following code extracts all links with weights greater or equal than 0.7 from the result set obtained in the last example:

getPairs(result, min.weight = 0.7, filter.link = "link")
## ============================================================
##    id fname_c1 fname_c2 lname_c1 lname_c2   by bm bd
## 1 290    HELGA ELFRIEDE   BERGER     <NA> 1989  1 18
## 2 466    HELGA ELFRIEDE   BERGER     <NA> 1989  1 28
## 3                                                   
## 4 313   URSULA   BIRGIT  MUELLRR     <NA> 1940  6 15
## 5 457   URSULA   BIRGIT  MUELLER     <NA> 1940  6 15
## 6                                                   
## 7 467   ULRIKE   NICOLE   BECKRR     <NA> 1982  8  4
## 8 472   ULRIKE   NICOLE   BECKER     <NA> 1982  8  4
## 9                                                   
##   is_match Class    Weight
## 1                         
## 2     TRUE     L 0.7786012
## 3                         
## 4                         
## 5     TRUE     L 0.7293529
## 6                         
## 7                         
## 8     TRUE     L 0.7293529
## 9

A frequent use case is to inspect misclassified record pairs; for this purpose two shortcuts are included that call getPairs with appropriate arguments:

getFalsePos(result)
## ============================================================
##    id fname_c1 fname_c2 lname_c1 lname_c2   by bm bd
## 1 388   ANDREA     <NA>    WEBER     <NA> 1945  5 20
## 2 408   ANDREA     <NA>  SCHMIDT     <NA> 1945  2 20
## 3                                                   
##   is_match Class    Weight
## 1                         
## 2    FALSE     L 0.5067013
## 3
getFalseNeg(result)
## ============================================================
##     id fname_c1 fname_c2 lname_c1 lname_c2   by bm bd
## 1  353     INGE     <NA>   SEIDEL     <NA> 1949  9  4
## 2  355    INGEU     <NA>   SEIDEL     <NA> 1949  8  4
## 3                                                    
## 4  285    ERIKA     <NA>    WEBER     <NA> 1995  2  1
## 5  379    ERIKA     <NA>    WEBER     <NA> 1992  2 29
## 6                                                    
## 7  127     KARL     <NA>    KLEIN     <NA> 2002  6 20
## 8  142     KARL     <NA>   KLEIBN     <NA> 2002  6 29
## 9                                                    
## 10  37 HARTMHUT     <NA> HOFFMSNN     <NA> 1929 12 29
## 11  72  HARTMUT     <NA> HOFFMANN     <NA> 1929 12 29
## 12                                                   
##    is_match Class    Weight
## 1                          
## 2      TRUE     N 0.4948059
## 3                          
## 4                          
## 5      TRUE     N 0.4782410
## 6                          
## 7                          
## 8      TRUE     N 0.4692532
## 9                          
## 10                         
## 11     TRUE     N 0.4081096
## 12